BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 20969833)

  • 1. Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise.
    Miettinen I; Alku P; Salminen N; May PJ; Tiitinen H
    Brain Res; 2011 Jan; 1367():298-309. PubMed ID: 20969833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical processing of degraded speech sounds: effects of distortion type and continuity.
    Miettinen I; Alku P; Yrttiaho S; May PJ; Tiitinen H
    Neuroimage; 2012 Apr; 60(2):1036-45. PubMed ID: 22289805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orderly cortical representation of vowel categories presented by multiple exemplars.
    Shestakova A; Brattico E; Soloviev A; Klucharev V; Huotilainen M
    Brain Res Cogn Brain Res; 2004 Nov; 21(3):342-50. PubMed ID: 15511650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The right-hemispheric auditory cortex in humans is sensitive to degraded speech sounds.
    Liikkanen LA; Tiitinen H; Alku P; Leino S; Yrttiaho S; May PJ
    Neuroreport; 2007 Apr; 18(6):601-5. PubMed ID: 17413665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds.
    Miettinen I; Tiitinen H; Alku P; May PJ
    BMC Neurosci; 2010 Feb; 11():24. PubMed ID: 20175890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex.
    Yrttiaho S; Alku P; May PJ; Tiitinen H
    J Acoust Soc Am; 2009 May; 125(5):3177-85. PubMed ID: 19425660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical differentiation of speech and nonspeech sounds at 100 ms: implications for dyslexia.
    Parviainen T; Helenius P; Salmelin R
    Cereb Cortex; 2005 Jul; 15(7):1054-63. PubMed ID: 15563727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic glottal excitation and formant frequencies in the perception of vowels.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    Neurol Clin Neurophysiol; 2004 Nov; 2004():103. PubMed ID: 16012623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal integration affects intensity change detection in human auditory cortex.
    Soeta Y; Nakagawa S
    Neuroreport; 2010 Dec; 21(18):1157-61. PubMed ID: 20938362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
    Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ
    Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term exposure to occupational noise alters the cortical organization of sound processing.
    Brattico E; Kujala T; Tervaniemi M; Alku P; Ambrosi L; Monitillo V
    Clin Neurophysiol; 2005 Jan; 116(1):190-203. PubMed ID: 15589197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory evoked fields to variations of interaural time delay.
    Soeta Y; Nakagawa S; Tonoike M
    Neurosci Lett; 2005 Aug; 383(3):311-6. PubMed ID: 15955427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the binaural auditory filter in the human brain.
    Soeta Y; Nakagawa S
    Neuroreport; 2007 Dec; 18(18):1939-43. PubMed ID: 18007191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound processing hierarchy within human auditory cortex.
    Okamoto H; Stracke H; Bermudez P; Pantev C
    J Cogn Neurosci; 2011 Aug; 23(8):1855-63. PubMed ID: 20521859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latency variation of auditory N1m responses to vocal and nonvocal sounds.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T
    Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromagnetic responses associated with perceptual segregation of pitch.
    Johnson BW; Muthukumaraswamy SD; Hautus MJ; Gaetz WC; Cheyne DO
    Neurol Clin Neurophysiol; 2004 Nov; 2004():33. PubMed ID: 16012630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age and background noise on processing a mistuned harmonic in an otherwise periodic complex sound.
    Alain C; McDonald K; Van Roon P
    Hear Res; 2012 Jan; 283(1-2):126-35. PubMed ID: 22101023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques.
    Palomäki KJ; Tiitinen H; Mäkinen V; May PJ; Alku P
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):364-79. PubMed ID: 16099350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.