These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 20970190)
1. No detected toxic concentrations in in situ algal growth inhibition tests--a convenient approach to aquatic ecotoxicology. Wang C; Wang X; Su R; Liang S; Yang S Ecotoxicol Environ Saf; 2011 Mar; 74(3):225-9. PubMed ID: 20970190 [TBL] [Abstract][Full Text] [Related]
2. Estimating toxic effect of copper on population of microalgae through a three-dimensional toxic effect growth model. Wang C; Li H; Wang X; Zhang Y Bull Environ Contam Toxicol; 2011 Jun; 86(6):576-82. PubMed ID: 21519963 [TBL] [Abstract][Full Text] [Related]
3. Monitoring copper toxicity in natural phytoplankton assemblages: application of Fast Repetition Rate fluorometry. Pérez P; Beiras R; Fernández E Ecotoxicol Environ Saf; 2010 Sep; 73(6):1292-303. PubMed ID: 20579733 [TBL] [Abstract][Full Text] [Related]
5. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests. Chen CY; Wang YJ; Yang CF Ecotoxicol Environ Saf; 2009 Jul; 72(5):1514-22. PubMed ID: 19342099 [TBL] [Abstract][Full Text] [Related]
6. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251 [TBL] [Abstract][Full Text] [Related]
7. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence. Pérez P; Fernández E; Beiras R Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589 [TBL] [Abstract][Full Text] [Related]
8. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium. Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677 [TBL] [Abstract][Full Text] [Related]
9. Active bio-monitoring of contamination in aquatic systems--an in situ translocation experiment applying the PICT concept. Rotter S; Sans-Piché F; Streck G; Altenburger R; Schmitt-Jansen M Aquat Toxicol; 2011 Jan; 101(1):228-36. PubMed ID: 21087798 [TBL] [Abstract][Full Text] [Related]
10. Comparison of different biological methods for the assessment of ecotoxicological risks. Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of Cylindrotheca closterium to copper: influence of three test endpoints and two test methods. Araújo CV; Diz FR; Lubián LM; Blasco J; Moreno-Garrido I Sci Total Environ; 2010 Aug; 408(17):3696-703. PubMed ID: 20597143 [TBL] [Abstract][Full Text] [Related]
12. Comparing ecotoxicological effect concentrations of chemicals established in multi-species vs. single-species toxicity test systems. De Laender F; De Schamphelaere KA; Vanrolleghem PA; Janssen CR Ecotoxicol Environ Saf; 2009 Feb; 72(2):310-5. PubMed ID: 18774172 [TBL] [Abstract][Full Text] [Related]
13. Ring test for whole-sediment toxicity assay with -a- benthic marine diatom. Araújo CV; Tornero V; Lubián LM; Blasco J; van Bergeijk SA; Cañavate P; Cid A; Franco D; Prado R; Bartual A; López MG; Ribeiro R; Moreira-Santos M; Torreblanca A; Jurado B; Moreno-Garrido I Sci Total Environ; 2010 Jan; 408(4):822-8. PubMed ID: 19906403 [TBL] [Abstract][Full Text] [Related]
14. Incorporating exposure into aquatic toxicological studies: an imperative. Wang WX Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):9-15. PubMed ID: 22099340 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Gatidou G; Thomaidis NS Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164 [TBL] [Abstract][Full Text] [Related]
16. Sediment integrative assessment of the Bay of Cádiz (Spain): an ecotoxicological and chemical approach. Araújo CV; Diz FR; Laiz I; Lubián LM; Blasco J; Moreno-Garrido I Environ Int; 2009 Aug; 35(6):831-41. PubMed ID: 19318227 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Qwiklite algal bioluminescence test with marine algal growth rate inhibition bioassays. Stauber JL; Binet MT; Bao VW; Boge J; Zhang AQ; Leung KM; Adams MS Environ Toxicol; 2008 Oct; 23(5):617-25. PubMed ID: 18528914 [TBL] [Abstract][Full Text] [Related]
18. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Levy JL; Angel BM; Stauber JL; Poon WL; Simpson SL; Cheng SH; Jolley DF Aquat Toxicol; 2008 Aug; 89(2):82-93. PubMed ID: 18639348 [TBL] [Abstract][Full Text] [Related]
19. Review of recent ecotoxicological studies on cladocerans. Sarma SS; Nandini S J Environ Sci Health B; 2006; 41(8):1417-30. PubMed ID: 17090502 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Debenest T; Pinelli E; Coste M; Silvestre J; Mazzella N; Madigou C; Delmas F Aquat Toxicol; 2009 Jun; 93(1):11-7. PubMed ID: 19342109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]