These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20970249)

  • 1. Process optimization for efficient dye removal by Aspergillus lentulus FJ172995.
    Kaushik P; Malik A
    J Hazard Mater; 2011 Jan; 185(2-3):837-43. PubMed ID: 20970249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05.
    Sharma S; Malik A; Satya S
    J Hazard Mater; 2009 May; 164(2-3):1198-204. PubMed ID: 18976855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.
    Kaushik P; Malik A
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):321-8. PubMed ID: 20708386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of response surface analysis for biodegradation of azo reactive textile dye using Aspergillus foetidus.
    Sharma P; Singh L
    J Basic Microbiol; 2012 Jun; 52(3):314-23. PubMed ID: 21780149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.
    Sharma P; Singh L; Dilbaghi N
    J Hazard Mater; 2009 Jan; 161(2-3):1081-6. PubMed ID: 18524475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger.
    Amini M; Younesi H; Bahramifar N; Lorestani AA; Ghorbani F; Daneshi A; Sharifzadeh M
    J Hazard Mater; 2008 Jun; 154(1-3):694-702. PubMed ID: 18068898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption.
    Kaushik P; Malik A
    Environ Sci Pollut Res Int; 2013 May; 20(5):2882-92. PubMed ID: 22996821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.
    Hameed BH; Tan IA; Ahmad AL
    J Hazard Mater; 2008 Oct; 158(2-3):324-32. PubMed ID: 18329169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.
    Khalaf MA
    Bioresour Technol; 2008 Sep; 99(14):6631-4. PubMed ID: 18242981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology.
    Moghaddam SS; Moghaddam MR; Arami M
    J Hazard Mater; 2010 Mar; 175(1-3):651-7. PubMed ID: 19944532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microflora involved in textile dye waste removal.
    Abd El-Rahim WM; Moawad H; Khalafallah M
    J Basic Microbiol; 2003; 43(3):167-74. PubMed ID: 12761767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical optimization for decolorization of textile dyes using Trametes versicolor.
    Srinivasan SV; Murthy DV
    J Hazard Mater; 2009 Jun; 165(1-3):909-14. PubMed ID: 19081186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single and binary dye and heavy metal bioaccumulation properties of Candida tropicalis: use of response surface methodology (RSM) for the estimation of removal yields.
    Gönen F; Aksu Z
    J Hazard Mater; 2009 Dec; 172(2-3):1512-9. PubMed ID: 19720462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the azo dye Procion Red H-EXL degradation by Fenton's reagent using experimental design.
    Rodrigues CS; Madeira LM; Boaventura RA
    J Hazard Mater; 2009 May; 164(2-3):987-94. PubMed ID: 18930346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability of immobilized wood-rotting fungal biomass for biosorption of basic dye Alcian Blue.
    Maurya NS; Mittal AK
    Water Sci Technol; 2009; 59(10):2073-9. PubMed ID: 19474503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.
    Taştan BE; Ertuğrul S; Dönmez G
    Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris.
    Can MY; Kaya Y; Algur OF
    Bioresour Technol; 2006 Sep; 97(14):1761-5. PubMed ID: 16162409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.
    Binupriya AR; Sathishkumar M; Dhamodaran K; Jayabalan R; Swaminathan K; Yun SE
    Biotechnol J; 2007 Aug; 2(8):1014-25. PubMed ID: 17526051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.