These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2097033)

  • 61. A modified bioassay for energy utilization in newly hatched chicks. 1. Determination of optimum durations for feed withdrawal and excreta collection.
    Murakami H; Akiba Y; Horiguchi M
    Poult Sci; 1994 Jul; 73(7):1094-106. PubMed ID: 7937471
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An evaluation of the nitrogen correction in the true metabolizable energy assay.
    Muztar AJ; Slinger SJ
    Poult Sci; 1981 Apr; 60(4):835-9. PubMed ID: 7301743
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of feeding by crop intubation on energy metabolism and physical activity in domestic cockerels.
    MacLeod MG
    Br Poult Sci; 1991 Dec; 32(5):1089-95. PubMed ID: 1786571
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of single essential amino acid deprivation on chick growth and nitrogen and energy balances at ad libitum- and equalized-food intakes.
    Kino K; Okumura J
    Poult Sci; 1986 Sep; 65(9):1728-35. PubMed ID: 3774737
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A modified bioassay for energy utilization in newly hatched chicks. 2. Determination of feed input and procedures to estimate endogenous energy loss.
    Murakami H; Akiba Y; Horiguchi M
    Poult Sci; 1995 Feb; 74(2):343-51. PubMed ID: 7724458
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Research note: a comparison of metabolisable energy values of lucerne and barley between young and mature ostriches.
    Cilliers SC; Hayes JP; Sales J; Chwalibog A; Du Preez JJ
    Arch Tierernahr; 1998; 51(1):77-82. PubMed ID: 9638307
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prediction of the energy values of feedstuffs for broilers using meta-analysis and neural networks.
    Mariano FC; Paixão CA; Lima RR; Alvarenga RR; Rodrigues PB; Nascimento GA
    Animal; 2013 Sep; 7(9):1440-5. PubMed ID: 23632093
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An evaluation of the true metabolizable energy assay for monitoring the apparent metabolizable energy values of poultry diets.
    Muztar AJ; Slinger SJ
    Poult Sci; 1981 Mar; 60(3):598-602. PubMed ID: 7301727
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlation of protein content of feedstuffs with the magnitude of nitrogen correction in true metabolizable energy determinations.
    Dale N; Fuller HL
    Poult Sci; 1984 May; 63(5):1008-12. PubMed ID: 6728787
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Precision of bioassays for apparent and true metabolizable energy adjusted to zero nitrogen balance.
    Wolynetz MS; Sibbald IR
    Poult Sci; 1989 Jan; 68(1):124-35. PubMed ID: 2704668
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of the previous diet, body weight, and duration of starvation of the assay bird on the true metabolizable energy value of corn.
    Shires A; Robblee AR; Hardin RT; Clandinin DR
    Poult Sci; 1979 May; 58(3):602-8. PubMed ID: 514948
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prediction of the metabolisable energy value of maize in adult cockerel.
    Lessire M; Hallouis JM; Barrier-Guillot B; Champion M; Femenias N
    Br Poult Sci; 2003 Dec; 44(5):813-4. PubMed ID: 14965130
    [No Abstract]   [Full Text] [Related]  

  • 73. The effect of the duration of starvation of the assay bird on true metabolizable energy values.
    Sibbald IR
    Poult Sci; 1976 Jul; 55(4):1578-9. PubMed ID: 951384
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparisons of bioassays for true metabolizable energy adjusted to zero nitrogen balance.
    Sibbald IR; Wolynetz MS
    Poult Sci; 1988 Aug; 67(8):1192-202. PubMed ID: 3217310
    [TBL] [Abstract][Full Text] [Related]  

  • 75. True and apparent metabolisable energy.
    Sibbald IR; Wolynetz MS
    Br Poult Sci; 1987 Dec; 28(4):782-8. PubMed ID: 3446346
    [No Abstract]   [Full Text] [Related]  

  • 76. Effect of stretch and force-feeding on the oesophagus of geese.
    Levinger IM; Kedem J
    Br Poult Sci; 1972 Nov; 13(6):611-4. PubMed ID: 4638821
    [No Abstract]   [Full Text] [Related]  

  • 77. Ecophysiological studies on the utilization of food in the paddy field grasshopper Oxya velox.
    Delvi MR; Pandian TJ
    Oecologia; 1971 Sep; 8(3):267-275. PubMed ID: 28311801
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein assay by rat growth; a comparison of (a) litter mates vs. randomly selected males, and (b) moderate restriction of food intake vs. ad libitum feeding.
    HARTE RA; TRAVERS JJ; SARICH P
    J Nutr; 1947 Oct; 34(4):363-72. PubMed ID: 20266673
    [No Abstract]   [Full Text] [Related]  

  • 79. Orthogonality in Principal Component Analysis Allows the Discovery of Lipids in the Jejunum That Are Independent of Ad Libitum Feeding.
    Balgoma D; Kullenberg F; Peters K; Dahlgren D; Heindryckx F; Lennernäs H; Hedeland M
    Metabolites; 2022 Sep; 12(9):. PubMed ID: 36144270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A study of histidine deficiency and nitrogen balance under ad libitum and force-feeding conditions.
    BOTHWELL JW; WILLIAMS JN
    J Nutr; 1951 Oct; 45(2):245-52. PubMed ID: 14889326
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.