These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20970406)
41. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Li Q; Karim AF; Ding X; Das B; Dobrowolski C; Gibson RM; Quiñones-Mateu ME; Karn J; Rojas RE Sci Rep; 2016 Jun; 6():27566. PubMed ID: 27297123 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of zeta-crystallin by Coumarins: a structure-activity study. Duhaiman AS J Protein Chem; 1996 Apr; 15(3):261-4. PubMed ID: 8804573 [TBL] [Abstract][Full Text] [Related]
43. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. Zhang K; Chen D; Ma K; Wu X; Hao H; Jiang S J Med Chem; 2018 Aug; 61(16):6983-7003. PubMed ID: 29712428 [TBL] [Abstract][Full Text] [Related]
45. Mitochondrial "power" drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Fiorillo M; Sotgia F; Sisci D; Cappello AR; Lisanti MP Oncotarget; 2017 Mar; 8(12):20309-20327. PubMed ID: 28411284 [TBL] [Abstract][Full Text] [Related]
46. Role of NADPH cytochrome P450 reductase in activation of RH1. Begleiter A; Leith MK; Patel D; Hasinoff BB Cancer Chemother Pharmacol; 2007 Oct; 60(5):713-23. PubMed ID: 17256129 [TBL] [Abstract][Full Text] [Related]
47. Human NAD(P)H:quinone oxidoreductase inhibition by flavonoids in living cells. Lee YY; Westphal AH; de Haan LH; Aarts JM; Rietjens IM; van Berkel WJ Free Radic Biol Med; 2005 Jul; 39(2):257-65. PubMed ID: 15964517 [TBL] [Abstract][Full Text] [Related]
48. A note on the inhibition of DT-diaphorase by dicoumarol. Preusch PC; Siegel D; Gibson NW; Ross D Free Radic Biol Med; 1991; 11(1):77-80. PubMed ID: 1718826 [TBL] [Abstract][Full Text] [Related]
49. The Menadione-Mediated WST1 Reduction by Cultured Astrocytes Depends on NQO1 Activity and Cytosolic Glucose Metabolism. Ehrke E; Steinmeier J; Stapelfeldt K; Dringen R Neurochem Res; 2021 Jan; 46(1):88-99. PubMed ID: 31902045 [TBL] [Abstract][Full Text] [Related]
50. Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism. Bello RI; Gómez-Díaz C; López-Lluch G; Forthoffer N; Córdoba-Pedregosa MC; Navas P; Villalba JM Biochem Pharmacol; 2005 Jun; 69(11):1613-25. PubMed ID: 15896341 [TBL] [Abstract][Full Text] [Related]
51. Caffeine, aminoimidazolecarboxamide and dicoumarol, inhibitors of NAD(P)H dehydrogenase (quinone) (DT diaphorase), prevent both the cytotoxicity and DNA interstrand crosslinking produced by 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) in Walker cells. Roberts JJ; Marchbank T; Kotsaki-Kovatsi VP; Boland MP; Friedlos F; Knox RJ Biochem Pharmacol; 1989 Nov; 38(22):4137-43. PubMed ID: 2480794 [TBL] [Abstract][Full Text] [Related]
52. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells. Gray JP; Karandrea S; Burgos DZ; Jaiswal AA; Heart EA Toxicol Lett; 2016 Nov; 262():1-11. PubMed ID: 27558805 [TBL] [Abstract][Full Text] [Related]
53. Design, synthesis and biological activity of 1,4-quinone moiety attached to betulin derivatives as potent DT-diaphorase substrate. Kadela-Tomanek M; Jastrzębska M; Marciniec K; Chrobak E; Bębenek E; Latocha M; Kuśmierz D; Boryczka S Bioorg Chem; 2021 Jan; 106():104478. PubMed ID: 33272711 [TBL] [Abstract][Full Text] [Related]
54. NAD(P)H: quinone oxidoreductase enhances proliferation inhibition by 4-hydroxytamoxifen. Allen PG; Kolesar JM Anticancer Res; 2002; 22(3):1475-80. PubMed ID: 12168826 [TBL] [Abstract][Full Text] [Related]
55. Cytotoxicity of RH1 and related aziridinylbenzoquinones: involvement of activation by NAD(P)H:quinone oxidoreductase (NQO1) and oxidative stress. Nemeikaite-Ceniene A; Sarlauskas J; Anusevicius Z; Nivinskas H; Cenas N Arch Biochem Biophys; 2003 Aug; 416(1):110-8. PubMed ID: 12859987 [TBL] [Abstract][Full Text] [Related]
56. In silico identification and biochemical characterization of novel inhibitors of NQO1. Nolan KA; Timson DJ; Stratford IJ; Bryce RA Bioorg Med Chem Lett; 2006 Dec; 16(24):6246-54. PubMed ID: 17011189 [TBL] [Abstract][Full Text] [Related]
57. Dietary induction of NQO1 increases the antitumour activity of mitomycin C in human colon tumours in vivo. Begleiter A; Leith MK; Thliveris JA; Digby T Br J Cancer; 2004 Oct; 91(8):1624-31. PubMed ID: 15467770 [TBL] [Abstract][Full Text] [Related]
58. Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. Xu S; Yao H; Pei L; Hu M; Li D; Qiu Y; Wang G; Wu L; Yao H; Zhu Z; Xu J Eur J Med Chem; 2017 May; 132():310-321. PubMed ID: 28395199 [TBL] [Abstract][Full Text] [Related]
59. Methoxylation of resveratrol: effects on induction of NAD(P)H quinone-oxidoreductase 1 (NQO1) activity and growth inhibitory properties. Zhang W; Go ML Bioorg Med Chem Lett; 2011 Feb; 21(3):1032-5. PubMed ID: 21215623 [TBL] [Abstract][Full Text] [Related]
60. Dicoumarol-sensitive glucuronidation of benzo(a)pyrene metabolites in rat liver microsomes. Segura-Aguilar JE; Barreiro V; Lind C Arch Biochem Biophys; 1986 Nov; 251(1):266-75. PubMed ID: 2431654 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]