These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20970900)

  • 21. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.
    Li WC; Deng H; Wong MH
    Environ Pollut; 2017 Dec; 231(Pt 1):732-741. PubMed ID: 28858668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.
    Tripathi RD; Tripathi P; Dwivedi S; Kumar A; Mishra A; Chauhan PS; Norton GJ; Nautiyal CS
    Metallomics; 2014 Oct; 6(10):1789-800. PubMed ID: 24925182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of radial oxygen loss in mangroves subjected to waterlogging.
    Cheng H; Wu ML; Li CD; Sun FL; Sun CC; Wang YS
    Ecotoxicology; 2020 Aug; 29(6):684-690. PubMed ID: 32394359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Prohaska T; Moreno-Jiménez E
    Environ Pollut; 2016 Sep; 216():215-222. PubMed ID: 27263113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer.
    Hu Y; Li JH; Zhu YG; Huang YZ; Hu HQ; Christie P
    Environ Geochem Health; 2005 Apr; 27(2):169-76. PubMed ID: 16003584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in wetland plants (Scirpus actus).
    Zhang Z; Moon HS; Myneni SCB; Jaffé PR
    J Hazard Mater; 2017 Jan; 321():382-389. PubMed ID: 27669379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Dependent Root Iron Plaque Effects on Distribution and Translocation of Chromium and Nickel in Yellow Flag (Iris pseudacorus L.).
    Xu B; Yu S; Ding J; Wu S; Ma J
    Int J Phytoremediation; 2015; 17(1-6):175-81. PubMed ID: 25254420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneously inhibit cadmium and arsenic uptake in rice (Oryza sativa L.) by Selenium enhanced iron plaque: performance and mechanism.
    Huang P; Zou D; Dong C; Tang C; Li Q; Zhao P; Zhang P; Liao Q; Yang Z
    Chemosphere; 2024 Jul; ():142903. PubMed ID: 39029704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic Accumulation and Translocation in Mangrove (Aegiceras corniculatum L.) Grown in Arsenic Contaminated Soils.
    Wu GR; Hong HL; Yan CL
    Int J Environ Res Public Health; 2015 Jun; 12(7):7244-53. PubMed ID: 26132478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis.
    Pardo T; Martínez-Fernández D; de la Fuente C; Clemente R; Komárek M; Bernal MP
    Environ Pollut; 2016 Dec; 219():296-304. PubMed ID: 27814546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.
    Rofkar JR; Dwyer DF
    Int J Phytoremediation; 2013; 15(6):561-72. PubMed ID: 23819297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of iron plaque on lead translocation in soil-Carex cinerascens kukenth. system.
    Liu C; Gong X; Chen C; Yang J; Xu S
    Int J Phytoremediation; 2016; 18(1):1-9. PubMed ID: 26364868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland.
    Bezbaruah AN; Zhang TC
    Biotechnol Bioeng; 2005 Feb; 89(3):308-18. PubMed ID: 15744841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola.
    Jiménez JC; Clode PL; Signorelli S; Veneklaas EJ; Colmer TD; Kotula L
    J Exp Bot; 2021 Apr; 72(8):3279-3293. PubMed ID: 33543268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants].
    Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM
    Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root adaptation in
    Zhang P; Li Q; Zhang C
    Int J Phytoremediation; 2020; 22(5):534-539. PubMed ID: 31718242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.