BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20971043)

  • 1. RAD18 lives a double life: Its implication in DNA double-strand break repair.
    Ting L; Jun H; Junjie C
    DNA Repair (Amst); 2010 Dec; 9(12):1241-8. PubMed ID: 20971043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of budding yeast Rad18 in repair of HO-induced double-strand breaks.
    Hirano Y; Reddy J; Sugimoto K
    DNA Repair (Amst); 2009 Jan; 8(1):51-9. PubMed ID: 18824138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
    Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P
    Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks.
    Tsuji Y; Watanabe K; Araki K; Shinohara M; Yamagata Y; Tsurimoto T; Hanaoka F; Yamamura K; Yamaizumi M; Tateishi S
    Genes Cells; 2008 Apr; 13(4):343-54. PubMed ID: 18363965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition.
    Palle K; Vaziri C
    Cell Cycle; 2011 May; 10(10):1625-38. PubMed ID: 21478670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of DNA double-strand break repair pathway choice.
    Shrivastav M; De Haro LP; Nickoloff JA
    Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD18 mediates DNA double-strand break-induced ubiquitination of chromatin protein.
    Mustofa MK; Tanoue Y; Chirifu M; Shimasaki T; Tateishi C; Nakamura T; Tateishi S
    J Biochem; 2021 Sep; 170(1):33-40. PubMed ID: 33508099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAD18 O-GlcNAcylation promotes translesion DNA synthesis and homologous recombination repair.
    Ma X; Fu H; Sun C; Wu W; Hou W; Zhou Z; Zheng H; Gong Y; Wu H; Qin J; Lou H; Li J; Tang TS; Guo C
    Cell Death Dis; 2024 May; 15(5):321. PubMed ID: 38719812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage.
    Yang Y; Durando M; Smith-Roe SL; Sproul C; Greenwalt AM; Kaufmann W; Oh S; Hendrickson EA; Vaziri C
    Nucleic Acids Res; 2013 Feb; 41(4):2296-312. PubMed ID: 23295675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation of replication protein A with the ubiquitin ligase Rad18 in DNA damage bypass.
    Huttner D; Ulrich HD
    Cell Cycle; 2008 Dec; 7(23):3629-33. PubMed ID: 19029798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway.
    Song IY; Palle K; Gurkar A; Tateishi S; Kupfer GM; Vaziri C
    J Biol Chem; 2010 Oct; 285(41):31525-36. PubMed ID: 20675655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic localization of human RAD18 during the cell cycle and a functional connection with DNA double-strand break repair.
    Inagaki A; van Cappellen WA; van der Laan R; Houtsmuller AB; Hoeijmakers JH; Grootegoed JA; Baarends WM
    DNA Repair (Amst); 2009 Feb; 8(2):190-201. PubMed ID: 19013543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair.
    Saberi A; Hochegger H; Szuts D; Lan L; Yasui A; Sale JE; Taniguchi Y; Murakawa Y; Zeng W; Yokomori K; Helleday T; Teraoka H; Arakawa H; Buerstedde JM; Takeda S
    Mol Cell Biol; 2007 Apr; 27(7):2562-71. PubMed ID: 17242200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Break-induced replication orchestrates resection-dependent template switching.
    Zhang T; Rawal Y; Jiang H; Kwon Y; Sung P; Greenberg RA
    Nature; 2023 Jul; 619(7968):201-208. PubMed ID: 37316655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship.
    Pardo B; Gómez-González B; Aguilera A
    Cell Mol Life Sci; 2009 Mar; 66(6):1039-56. PubMed ID: 19153654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCNA modifications for regulation of post-replication repair pathways.
    Lee KY; Myung K
    Mol Cells; 2008 Jul; 26(1):5-11. PubMed ID: 18525240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAD18 transmits DNA damage signalling to elicit homologous recombination repair.
    Huang J; Huen MS; Kim H; Leung CC; Glover JN; Yu X; Chen J
    Nat Cell Biol; 2009 May; 11(5):592-603. PubMed ID: 19396164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination.
    Shiomi N; Mori M; Tsuji H; Imai T; Inoue H; Tateishi S; Yamaizumi M; Shiomi T
    Nucleic Acids Res; 2007; 35(2):e9. PubMed ID: 17158148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae.
    Motegi A; Kuntz K; Majeed A; Smith S; Myung K
    Mol Cell Biol; 2006 Feb; 26(4):1424-33. PubMed ID: 16449653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and function of DNA double-strand break repair foci in mammalian cells.
    Bekker-Jensen S; Mailand N
    DNA Repair (Amst); 2010 Dec; 9(12):1219-28. PubMed ID: 21035408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.