These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20971219)
1. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Roohani-Esfahani SI; Nouri-Khorasani S; Lu ZF; Appleyard RC; Zreiqat H Acta Biomater; 2011 Mar; 7(3):1307-18. PubMed ID: 20971219 [TBL] [Abstract][Full Text] [Related]
2. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
3. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
5. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548 [TBL] [Abstract][Full Text] [Related]
6. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Ji L; Wang W; Jin D; Zhou S; Song X Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():1-9. PubMed ID: 25491953 [TBL] [Abstract][Full Text] [Related]
7. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes. Badr-Mohammadi MR; Hesaraki S; Zamanian A J Mater Sci Mater Med; 2014 Jan; 25(1):185-97. PubMed ID: 24101184 [TBL] [Abstract][Full Text] [Related]
11. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765 [TBL] [Abstract][Full Text] [Related]
12. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Lu Z; Roohani-Esfahani SI; Wang G; Zreiqat H Nanomedicine; 2012 May; 8(4):507-15. PubMed ID: 21839050 [TBL] [Abstract][Full Text] [Related]
13. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Li X; Shi J; Dong X; Zhang L; Zeng H J Biomed Mater Res A; 2008 Jan; 84(1):84-91. PubMed ID: 17600329 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
16. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
19. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
20. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]