BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20971219)

  • 21. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q; Rahaman MN; Fu H; Liu X
    J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.
    Leach JK; Kaigler D; Wang Z; Krebsbach PH; Mooney DJ
    Biomaterials; 2006 Jun; 27(17):3249-55. PubMed ID: 16490250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.
    Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR
    Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass.
    Lee HH; Yu HS; Jang JH; Kim HW
    Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.
    Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW
    J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering.
    Sadiasa A; Kim MS; Lee BT
    J Drug Target; 2013 Sep; 21(8):719-29. PubMed ID: 23815378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.
    Yazdimamaghani M; Razavi M; Vashaee D; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():436-444. PubMed ID: 25686970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.
    Hu J; Yang Z; Zhou Y; Liu Y; Li K; Lu H
    J Mater Sci Mater Med; 2015 Nov; 26(11):257. PubMed ID: 26449447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability.
    Wu C; Luo Y; Cuniberti G; Xiao Y; Gelinsky M
    Acta Biomater; 2011 Jun; 7(6):2644-50. PubMed ID: 21402182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics and Effects on Dental Pulp Cells of a Polycaprolactone/Submicron Bioactive Glass Composite Scaffold.
    Wang S; Hu Q; Gao X; Dong Y
    J Endod; 2016 Jul; 42(7):1070-5. PubMed ID: 27325456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds.
    Yang X; Chen X; Wang H
    Biomacromolecules; 2009 Oct; 10(10):2772-8. PubMed ID: 19743842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering.
    Won JE; Mateos-Timoneda MA; Castano O; Planell JA; Seo SJ; Lee EJ; Han CM; Kim HW
    Biotechnol Lett; 2015 Apr; 37(4):935-42. PubMed ID: 25502922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.