These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20971219)
21. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
22. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
23. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Leach JK; Kaigler D; Wang Z; Krebsbach PH; Mooney DJ Biomaterials; 2006 Jun; 27(17):3249-55. PubMed ID: 16490250 [TBL] [Abstract][Full Text] [Related]
24. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174 [TBL] [Abstract][Full Text] [Related]
25. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Lee HH; Yu HS; Jang JH; Kim HW Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
27. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
28. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. Sadiasa A; Kim MS; Lee BT J Drug Target; 2013 Sep; 21(8):719-29. PubMed ID: 23815378 [TBL] [Abstract][Full Text] [Related]
29. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Yazdimamaghani M; Razavi M; Vashaee D; Tayebi L Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():436-444. PubMed ID: 25686970 [TBL] [Abstract][Full Text] [Related]
30. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. Hu J; Yang Z; Zhou Y; Liu Y; Li K; Lu H J Mater Sci Mater Med; 2015 Nov; 26(11):257. PubMed ID: 26449447 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Wu C; Luo Y; Cuniberti G; Xiao Y; Gelinsky M Acta Biomater; 2011 Jun; 7(6):2644-50. PubMed ID: 21402182 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
33. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138 [TBL] [Abstract][Full Text] [Related]
34. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
35. Characteristics and Effects on Dental Pulp Cells of a Polycaprolactone/Submicron Bioactive Glass Composite Scaffold. Wang S; Hu Q; Gao X; Dong Y J Endod; 2016 Jul; 42(7):1070-5. PubMed ID: 27325456 [TBL] [Abstract][Full Text] [Related]
36. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Yang X; Chen X; Wang H Biomacromolecules; 2009 Oct; 10(10):2772-8. PubMed ID: 19743842 [TBL] [Abstract][Full Text] [Related]
37. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related]
38. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Won JE; Mateos-Timoneda MA; Castano O; Planell JA; Seo SJ; Lee EJ; Han CM; Kim HW Biotechnol Lett; 2015 Apr; 37(4):935-42. PubMed ID: 25502922 [TBL] [Abstract][Full Text] [Related]
39. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
40. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]