These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20971219)
41. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Kumar P; Dehiya BS; Sindhu A Iran Biomed J; 2019 May; 23(3):190-9. PubMed ID: 30266067 [TBL] [Abstract][Full Text] [Related]
42. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro. Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136 [TBL] [Abstract][Full Text] [Related]
43. In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. Saino E; Maliardi V; Quartarone E; Fassina L; Benedetti L; De Angelis MG; Mustarelli P; Facchini A; Visai L Tissue Eng Part A; 2010 Mar; 16(3):995-1008. PubMed ID: 19839719 [TBL] [Abstract][Full Text] [Related]
44. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P; Pavasant P; Supaphol P Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356 [TBL] [Abstract][Full Text] [Related]
45. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. Valenzuela F; Covarrubias C; Martínez C; Smith P; Díaz-Dosque M; Yazdani-Pedram M J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1672-82. PubMed ID: 22707209 [TBL] [Abstract][Full Text] [Related]
46. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
47. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. Chen QZ; Efthymiou A; Salih V; Boccaccini AR J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403 [TBL] [Abstract][Full Text] [Related]
48. Effect of zirconia-mullite incorporated biphasic calcium phosphate/biopolymer composite scaffolds for bone tissue engineering. Rittidach T; Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W Biomed Phys Eng Express; 2020 Jul; 6(5):055004. PubMed ID: 33444235 [TBL] [Abstract][Full Text] [Related]
49. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Shahin-Shamsabadi A; Hashemi A; Tahriri M; Bastami F; Salehi M; Mashhadi Abbas F Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():280-288. PubMed ID: 29853093 [TBL] [Abstract][Full Text] [Related]
50. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Shah Mohammadi M; Ahmed I; Marelli B; Rudd C; Bureau MN; Nazhat SN Acta Biomater; 2010 Aug; 6(8):3157-68. PubMed ID: 20206722 [TBL] [Abstract][Full Text] [Related]
51. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Ke Y; Wang YJ; Ren L; Zhao QC; Huang W Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067 [TBL] [Abstract][Full Text] [Related]
52. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. Kim HJ; Lee JH; Im GI J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210 [TBL] [Abstract][Full Text] [Related]
54. Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. Yeo A; Wong WJ; Teoh SH J Biomed Mater Res A; 2010 Jun; 93(4):1358-67. PubMed ID: 19911382 [TBL] [Abstract][Full Text] [Related]
55. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures. Fuchs S; Jiang X; Gotman I; Makarov C; Schmidt H; Gutmanas EY; Kirkpatrick CJ Acta Biomater; 2010 Aug; 6(8):3169-77. PubMed ID: 20144913 [TBL] [Abstract][Full Text] [Related]
56. The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Rai B; Teoh SH; Ho KH; Hutmacher DW; Cao T; Chen F; Yacob K Biomaterials; 2004 Nov; 25(24):5499-506. PubMed ID: 15142731 [TBL] [Abstract][Full Text] [Related]
57. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. Li H; Du R; Chang J J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674 [TBL] [Abstract][Full Text] [Related]
58. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261 [TBL] [Abstract][Full Text] [Related]
59. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
60. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]