These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
63. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
64. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
65. In situ preparation and osteogenic properties of bionanocomposite scaffolds based on aliphatic polyurethane and bioactive glass nanoparticles. Covarrubias C; Agüero A; Maureira M; Morelli E; Escobar G; Cuadra F; Peñafiel C; Von Marttens A Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():642-653. PubMed ID: 30606576 [TBL] [Abstract][Full Text] [Related]
66. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration. Puértolas JA; Vadillo JL; Sánchez-Salcedo S; Nieto A; Gómez-Barrena E; Vallet-Regí M Acta Biomater; 2011 Feb; 7(2):841-7. PubMed ID: 20709633 [TBL] [Abstract][Full Text] [Related]
67. The degradation profile of novel, bioresorbable PCL-TCP scaffolds: an in vitro and in vivo study. Yeo A; Rai B; Sju E; Cheong JJ; Teoh SH J Biomed Mater Res A; 2008 Jan; 84(1):208-18. PubMed ID: 17607768 [TBL] [Abstract][Full Text] [Related]
68. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. Causa F; Netti PA; Ambrosio L; Ciapetti G; Baldini N; Pagani S; Martini D; Giunti A J Biomed Mater Res A; 2006 Jan; 76(1):151-62. PubMed ID: 16258959 [TBL] [Abstract][Full Text] [Related]
69. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Fu Q; Rahaman MN; Bal BS; Brown RF J Biomed Mater Res A; 2010 Jun; 93(4):1380-90. PubMed ID: 19911380 [TBL] [Abstract][Full Text] [Related]
70. Shock waves induce activity of human osteoblast-like cells in bioactive scaffolds. Muzio G; Vernè E; Canuto RA; Martinasso G; Saracino S; Baino F; Miola M; Berta L; Frairia R; Vitale-Brovarone C J Trauma; 2010 Jun; 68(6):1439-44. PubMed ID: 20234329 [TBL] [Abstract][Full Text] [Related]
71. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
72. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927 [TBL] [Abstract][Full Text] [Related]
73. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites. Aguilar-Pérez FJ; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Covarrubias C; Pedram-Yazdani M J Biomater Appl; 2016 Apr; 30(9):1362-72. PubMed ID: 26767396 [TBL] [Abstract][Full Text] [Related]
75. Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Petretta M; Gambardella A; Boi M; Berni M; Cavallo C; Marchiori G; Maltarello MC; Bellucci D; Fini M; Baldini N; Grigolo B; Cannillo V Biology (Basel); 2021 May; 10(5):. PubMed ID: 34064398 [TBL] [Abstract][Full Text] [Related]
76. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Ajita J; Saravanan S; Selvamurugan N Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():142-9. PubMed ID: 26042701 [TBL] [Abstract][Full Text] [Related]
77. Effect of testosterone incorporation on cell proliferation and differentiation for polymer-bioceramic composites. da Costa KJ; Passos JJ; Gomes AD; Sinisterra RD; Lanza CR; Cortés ME J Mater Sci Mater Med; 2012 Nov; 23(11):2751-9. PubMed ID: 22886580 [TBL] [Abstract][Full Text] [Related]
78. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application. Fereshteh Z; Nooeaid P; Fathi M; Bagri A; Boccaccini AR Data Brief; 2015 Sep; 4():524-8. PubMed ID: 26966716 [TBL] [Abstract][Full Text] [Related]
79. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation. Kim SE; Yun YP; Lee DW; Kang EY; Jeong WJ; Lee B; Jeong MS; Kim HJ; Park K; Song HR Biomed Res Int; 2015; 2015():320713. PubMed ID: 26221587 [TBL] [Abstract][Full Text] [Related]
80. 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. Wang X; Molino BZ; Pitkänen S; Ojansivu M; Xu C; Hannula M; Hyttinen J; Miettinen S; Hupa L; Wallace G ACS Biomater Sci Eng; 2019 Sep; 5(9):4496-4510. PubMed ID: 33438415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]