These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 20971803)

  • 1. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia.
    Pezzulo AA; Starner TD; Scheetz TE; Traver GL; Tilley AE; Harvey BG; Crystal RG; McCray PB; Zabner J
    Am J Physiol Lung Cell Mol Physiol; 2011 Jan; 300(1):L25-31. PubMed ID: 20971803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume transport across tracheal and bronchial airway epithelia in a tubular culture system.
    Grubb BR; Schiretz FR; Boucher RC
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C21-9. PubMed ID: 9252438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media.
    Leung C; Wadsworth SJ; Yang SJ; Dorscheid DR
    Am J Physiol Lung Cell Mol Physiol; 2020 May; 318(5):L1063-L1073. PubMed ID: 32208929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture and differentiation of mouse tracheal epithelial cells.
    You Y; Brody SL
    Methods Mol Biol; 2013; 945():123-43. PubMed ID: 23097105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells.
    Ross AJ; Dailey LA; Brighton LE; Devlin RB
    Am J Respir Cell Mol Biol; 2007 Aug; 37(2):169-85. PubMed ID: 17413031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenobiotic metabolism in differentiated human bronchial epithelial cells.
    Boei JJWA; Vermeulen S; Klein B; Hiemstra PS; Verhoosel RM; Jennen DGJ; Lahoz A; Gmuender H; Vrieling H
    Arch Toxicol; 2017 May; 91(5):2093-2105. PubMed ID: 27738743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A toolbox for studying respiratory viral infections using air-liquid interface cultures of human airway epithelial cells.
    Michi AN; Proud D
    Am J Physiol Lung Cell Mol Physiol; 2021 Jul; 321(1):L263-L280. PubMed ID: 34010062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives.
    Cao X; Coyle JP; Xiong R; Wang Y; Heflich RH; Ren B; Gwinn WM; Hayden P; Rojanasakul L
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):104-132. PubMed ID: 33175307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of mouse airway epithelial cell culture for asthma research.
    Horani A; Dickinson JD; Brody SL
    Methods Mol Biol; 2013; 1032():91-107. PubMed ID: 23943446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human nasal and tracheo-bronchial respiratory epithelial cell culture.
    Fulcher ML; Randell SH
    Methods Mol Biol; 2013; 945():109-21. PubMed ID: 23097104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiated cultures of primary hamster tracheal airway epithelial cells.
    Rowe RK; Brody SL; Pekosz A
    In Vitro Cell Dev Biol Anim; 2004; 40(10):303-11. PubMed ID: 15780007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing Air-Liquid Interface (ALI) Airway Culture Models for Infectious Disease Research.
    Chiok KR; Dahlan NA; Banerjee A; Dhar N
    Methods Mol Biol; 2024; 2813():137-144. PubMed ID: 38888776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation of growth conditions for ovine airway epithelial cell differentiation at an air-liquid interface.
    O'Boyle N; Sutherland E; Berry CC; Davies RL
    PLoS One; 2018; 13(3):e0193998. PubMed ID: 29518140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive siRNA transfection method for gene knockdown in air-liquid interface airway epithelial cell cultures.
    Bartman CM; Stelzig KE; Linden DR; Prakash YS; Chiarella SE
    Am J Physiol Lung Cell Mol Physiol; 2021 Jul; 321(1):L280-L286. PubMed ID: 34037474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of ferrets for electrophysiologic monitoring of ion transport.
    Kaza N; Raju SV; Cadillac JM; Trombley JA; Rasmussen L; Tang L; Dohm E; Harrod KS; Rowe SM
    PLoS One; 2017; 12(10):e0186984. PubMed ID: 29077751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells.
    Wang H; He L; Liu B; Feng Y; Zhou H; Zhang Z; Wu Y; Wang J; Gan Y; Yuan T; Wu M; Xie X; Feng Z
    BMC Cell Biol; 2018 Jun; 19(1):10. PubMed ID: 29954317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia.
    Boucher RC; Larsen EH
    Am J Physiol; 1988 Apr; 254(4 Pt 1):C535-47. PubMed ID: 3354651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air-interface cultures of guinea pig airway epithelial cells: effects of active sodium and chloride transport inhibitors on bioelectric properties.
    Robison TW; Kim KJ
    Exp Lung Res; 1994; 20(2):101-17. PubMed ID: 8020426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface.
    O'Boyle N; Sutherland E; Berry CC; Davies RL
    PLoS One; 2017; 12(7):e0181583. PubMed ID: 28746416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface.
    Lam HC; Choi AM; Ryter SW
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.