These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20971878)

  • 1. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.
    Blumer-Schuette SE; Lewis DL; Kelly RM
    Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
    Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM
    J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
    Ozdemir I; Blumer-Schuette SE; Kelly RM
    Appl Environ Microbiol; 2012 Feb; 78(3):768-77. PubMed ID: 22138994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs.
    Miroshnichenko ML; Kublanov IV; Kostrikina NA; Tourova TP; Kolganova TV; Birkeland NK; Bonch-Osmolovskaya EA
    Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1492-6. PubMed ID: 18523201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
    Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass.
    Blumer-Schuette SE; Giannone RJ; Zurawski JV; Ozdemir I; Ma Q; Yin Y; Xu Y; Kataeva I; Poole FL; Adams MW; Hamilton-Brehm SD; Elkins JG; Larimer FW; Land ML; Hauser LJ; Cottingham RW; Hettich RL; Kelly RM
    J Bacteriol; 2012 Aug; 194(15):4015-28. PubMed ID: 22636774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
    VanFossen AL; Ozdemir I; Zelin SL; Kelly RM
    Biotechnol Bioeng; 2011 Jul; 108(7):1559-69. PubMed ID: 21337327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium.
    Bredholt S; Sonne-Hansen J; Nielsen P; Mathrani IM; Ahring BK
    Int J Syst Bacteriol; 1999 Jul; 49 Pt 3():991-6. PubMed ID: 10425755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost.
    Izquierdo JA; Sizova MV; Lynd LR
    Appl Environ Microbiol; 2010 Jun; 76(11):3545-53. PubMed ID: 20382819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T.
    Elkins JG; Lochner A; Hamilton-Brehm SD; Davenport KW; Podar M; Brown SD; Land ML; Hauser LJ; Klingeman DM; Raman B; Goodwin LA; Tapia R; Meincke LJ; Detter JC; Bruce DC; Han CS; Palumbo AV; Cottingham RW; Keller M; Graham DE
    J Bacteriol; 2010 Nov; 192(22):6099-100. PubMed ID: 20851897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-based reclassification of
    Habib N; Rao MPN; Xiao M; Jan SA; Li WJ
    Int J Syst Evol Microbiol; 2021 Aug; 71(8):. PubMed ID: 34424833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov.
    Yang SJ; Kataeva I; Wiegel J; Yin Y; Dam P; Xu Y; Westpheling J; Adams MWW
    Int J Syst Evol Microbiol; 2010 Sep; 60(Pt 9):2011-2015. PubMed ID: 19801388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
    van de Werken HJ; Verhaart MR; VanFossen AL; Willquist K; Lewis DL; Nichols JD; Goorissen HP; Mongodin EF; Nelson KE; van Niel EW; Stams AJ; Ward DE; de Vos WM; van der Oost J; Kelly RM; Kengen SW
    Appl Environ Microbiol; 2008 Nov; 74(21):6720-9. PubMed ID: 18776029
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Chen Y; Nishihara A; Iino T; Ohkuma M; Haruta S
    Int J Syst Evol Microbiol; 2021 Sep; 71(9):. PubMed ID: 34542397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus.
    Chung D; Cha M; Farkas J; Westpheling J
    PLoS One; 2013; 8(5):e62881. PubMed ID: 23658781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.