These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Aschenbach JR; Zebeli Q; Patra AK; Greco G; Amasheh S; Penner GB J Dairy Sci; 2019 Feb; 102(2):1866-1882. PubMed ID: 30580938 [TBL] [Abstract][Full Text] [Related]
8. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. Steele MA; Dionissopoulos L; AlZahal O; Doelman J; McBride BW J Dairy Sci; 2012 Jan; 95(1):318-27. PubMed ID: 22192211 [TBL] [Abstract][Full Text] [Related]
9. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Nagaraja TG; Titgemeyer EC J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750 [TBL] [Abstract][Full Text] [Related]
10. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Yan L; Zhang B; Shen Z J Dairy Sci; 2014 Sep; 97(9):5668-75. PubMed ID: 24996270 [TBL] [Abstract][Full Text] [Related]
11. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. Khan MA; Lee HJ; Lee WS; Kim HS; Kim SB; Park SB; Baek KS; Ha JK; Choi YJ J Dairy Sci; 2008 Mar; 91(3):1140-9. PubMed ID: 18292270 [TBL] [Abstract][Full Text] [Related]
12. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Eun JS; Beauchemin KA J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444 [TBL] [Abstract][Full Text] [Related]
13. Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites. Dengler F; Rackwitz R; Benesch F; Pfannkuche H; Gäbel G J Anim Physiol Anim Nutr (Berl); 2015 Apr; 99(2):379-90. PubMed ID: 24804847 [TBL] [Abstract][Full Text] [Related]
14. Effects of increasing level of corn distillers dried grains with solubles on intake, digestion, and ruminal fermentation in steers fed seventy percent concentrate diets. Leupp JL; Lardy GP; Karges KK; Gibson ML; Caton JS J Anim Sci; 2009 Sep; 87(9):2906-12. PubMed ID: 19465500 [TBL] [Abstract][Full Text] [Related]
15. Feeding barley grain-rich diets altered electrophysiological properties and permeability of the ruminal wall in a goat model. Klevenhusen F; Hollmann M; Podstatzky-Lichtenstein L; Krametter-Frötscher R; Aschenbach JR; Zebeli Q J Dairy Sci; 2013 Apr; 96(4):2293-2302. PubMed ID: 23403198 [TBL] [Abstract][Full Text] [Related]
16. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH. Yang WZ; Beauchemin KA J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723 [TBL] [Abstract][Full Text] [Related]
17. Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs. Sun DM; Mao SY; Zhu WY; Liu JH Animal; 2018 Nov; 12(11):2274-2283. PubMed ID: 29477152 [TBL] [Abstract][Full Text] [Related]
18. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. Benchaar C; Petit HV; Berthiaume R; Ouellet DR; Chiquette J; Chouinard PY J Dairy Sci; 2007 Feb; 90(2):886-97. PubMed ID: 17235165 [TBL] [Abstract][Full Text] [Related]