These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20972254)

  • 1. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development.
    Stoneham ET; Sanders EM; Sanyal M; Dumas TC
    Biol Bull; 2010 Oct; 219(2):81-99. PubMed ID: 20972254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental modification of synaptic NMDAR composition and maturation of glutamatergic synapses: matching postsynaptic slots with receptor pegs.
    Sanders EM; Nguyen MA; Zhou KC; Hanks ME; Yusuf KA; Cox DN; Dumas TC
    Biol Bull; 2013 Feb; 224(1):1-13. PubMed ID: 23493503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of neural activity in synaptic development and its implications for adult brain function.
    Aamodt SM; Constantine-Paton M
    Adv Neurol; 1999; 79():133-44. PubMed ID: 10514810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The developmental stages of synaptic plasticity.
    Lohmann C; Kessels HW
    J Physiol; 2014 Jan; 592(1):13-31. PubMed ID: 24144877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid alteration of synaptic number and postsynaptic thickening length by NMDA: an electron microscopic study in the occipital cortex of postnatal rats.
    Brooks WJ; Petit TL; LeBoutillier JC; Lo R
    Synapse; 1991 May; 8(1):41-8. PubMed ID: 1831299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience-dependent changes in NMDA receptor composition at mature central synapses.
    Kopp C; Longordo F; Lüthi A
    Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches.
    Bottjer SW
    J Neurophysiol; 2005 Dec; 94(6):3698-707. PubMed ID: 16107531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.
    Bashir ZI; Alford S; Davies SN; Randall AD; Collingridge GL
    Nature; 1991 Jan; 349(6305):156-8. PubMed ID: 1846031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural ECM molecules in axonal and synaptic homeostatic plasticity.
    Frischknecht R; Chang KJ; Rasband MN; Seidenbecher CI
    Prog Brain Res; 2014; 214():81-100. PubMed ID: 25410354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated.
    Mainen ZF; Malinow R; Svoboda K
    Nature; 1999 May; 399(6732):151-5. PubMed ID: 10335844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses.
    Yanagisawa T; Tsumoto T; Kimura F
    Eur J Neurosci; 2004 Dec; 20(11):3006-18. PubMed ID: 15579155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses.
    Pérez-Otaño I; Ehlers MD
    Neurosignals; 2004; 13(4):175-89. PubMed ID: 15148446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional synaptic plasticity induced by conditioned stimulations with different number of pulse at hippocampal CA1 synapses: roles of N-methyl-D-aspartate and metabotropic glutamate receptors.
    Hsu JC; Cheng SJ; Yang HW; Wang HJ; Chiu TH; Min MY; Lin YW
    Synapse; 2011 Aug; 65(8):795-803. PubMed ID: 21218453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of seizures on the connectivity and circuitry of the developing brain.
    Swann JW
    Ment Retard Dev Disabil Res Rev; 2004; 10(2):96-100. PubMed ID: 15362163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of synaptic plasticity. Changes in postsynaptic densities and glutamate receptors in chicken forebrain during maturation.
    Rostas JA; Kavanagh JM; Dodd PR; Heath JW; Powis DA
    Mol Neurobiol; 1991; 5(2-4):203-16. PubMed ID: 1668386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early expression of AMPA receptors and lack of NMDA receptors in developing rat climbing fibre synapses.
    Lachamp P; Balland B; Tell F; Baude A; Strube C; Crest M; Kessler JP
    J Physiol; 2005 May; 564(Pt 3):751-63. PubMed ID: 15731186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release.
    Walz C; Jüngling K; Lessmann V; Gottmann K
    J Neurophysiol; 2006 Dec; 96(6):3512-6. PubMed ID: 17110740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal.
    van Zundert B; Yoshii A; Constantine-Paton M
    Trends Neurosci; 2004 Jul; 27(7):428-37. PubMed ID: 15219743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.