These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20972317)

  • 1. Quantum dot/carbon nanotube/silicon double heterojunctions for multi-band room temperature infrared detection.
    Fernandes GE; Liu Z; Kim JH; Hsu CH; Tzolov MB; Xu J
    Nanotechnology; 2010 Nov; 21(46):465204. PubMed ID: 20972317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.
    Lifshitz E; Brumer M; Kigel A; Sashchiuk A; Bashouti M; Sirota M; Galun E; Burshtein Z; Le Quang AQ; Ledoux-Rak I; Zyss J
    J Phys Chem B; 2006 Dec; 110(50):25356-65. PubMed ID: 17165982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode.
    Sun G; Soref RA; Cheng HH
    Opt Express; 2010 Sep; 18(19):19957-65. PubMed ID: 20940887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids.
    Choi JK; Jang S; Sohn H; Jeong HD
    J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids.
    Ka I; Le Borgne V; Fujisawa K; Hayashi T; Kim YA; Endo M; Ma D; El Khakani MA
    Sci Rep; 2016 Feb; 6():20083. PubMed ID: 26830452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.
    Kongkanand A; Tvrdy K; Takechi K; Kuno M; Kamat PV
    J Am Chem Soc; 2008 Mar; 130(12):4007-15. PubMed ID: 18311974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band offsets and photocurrent spectroscopy of Si/Ge heterostructures with quantum dots.
    Kondratenko SV; Nikolenko AS; Vakulenko OV; Valakh MY; Yukhymchuk VO; Dvurechenskii AV; Nikiforov AI
    Nanotechnology; 2008 Apr; 19(14):145703. PubMed ID: 21817769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide.
    Chang GR; Ma F; Ma DY; Xu KW
    Nanotechnology; 2010 Nov; 21(46):465605. PubMed ID: 20975214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient optical studies of interfacial charge transfer at nanostructured metal oxide/PbS quantum dot/organic hole conductor heterojunctions.
    Leventis HC; O'Mahony F; Akhtar J; Afzaal M; O'Brien P; Haque SA
    J Am Chem Soc; 2010 Mar; 132(8):2743-50. PubMed ID: 20128629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced molecular structural changes of linear poly(ethylene imine) in water studied by mid-infrared and near-infrared spectroscopies.
    Kakuda H; Okada T; Hasegawa T
    J Phys Chem B; 2009 Oct; 113(42):13910-6. PubMed ID: 19778003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant electron scattering by defects in single-walled carbon nanotubes.
    Bockrath M; Liang W; Bozovic D; Hafner JH; Lieber CM; Tinkham M; Park H
    Science; 2001 Jan; 291(5502):283-5. PubMed ID: 11209073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong near-infrared luminescence in BaSnO3.
    Mizoguchi H; Woodward PM; Park CH; Keszler DA
    J Am Chem Soc; 2004 Aug; 126(31):9796-800. PubMed ID: 15291583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible photovoltaic cells fabricated utilizing ZnO quantum dot/carbon nanotube heterojunctions.
    Li F; Son DI; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 Apr; 20(15):155202. PubMed ID: 19420541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films.
    Itkis ME; Borondics F; Yu A; Haddon RC
    Science; 2006 Apr; 312(5772):413-6. PubMed ID: 16627739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical hole injection into the valence band of thiol stabilised CdTe quantum dots.
    Kissling GP; Fermín DJ
    Phys Chem Chem Phys; 2009 Nov; 11(43):10080-6. PubMed ID: 19865763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel narrow band-gap InAsSbP-based quantum dot mid-infrared photodetectors: fabrication, optoelectronic and electrophysical properties.
    Harutyunyan V; Gambaryan K; Aroutiounian V
    J Nanosci Nanotechnol; 2013 Feb; 13(2):799-803. PubMed ID: 23646518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm.
    Keuleyan SE; Guyot-Sionnest P; Delerue C; Allan G
    ACS Nano; 2014 Aug; 8(8):8676-82. PubMed ID: 25117471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption cross-section and related optical properties of colloidal InAs quantum dots.
    Yu P; Beard MC; Ellingson RJ; Ferrere S; Curtis C; Drexler J; Luiszer F; Nozik AJ
    J Phys Chem B; 2005 Apr; 109(15):7084-7. PubMed ID: 16851806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconventional gap state of trapped exciton in lead sulfide quantum dots.
    Lewis JE; Wu S; Jiang XJ
    Nanotechnology; 2010 Nov; 21(45):455402. PubMed ID: 20947935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.