BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20972323)

  • 1. Li electroactivity of iron (II) tungstate nanorods.
    Shim HW; Cho IS; Hong KS; Cho WI; Kim DW
    Nanotechnology; 2010 Nov; 21(46):465602. PubMed ID: 20972323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties.
    Yoon S; Lee ES; Manthiram A
    Inorg Chem; 2012 Mar; 51(6):3505-12. PubMed ID: 22380796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal realization of a hierarchical, flowerlike MnWO4@MWCNTs nanocomposite with enhanced reversible Li storage as a new anode material.
    Shim HW; Lim AH; Kim JC; Lee GH; Kim DW
    Chem Asian J; 2013 Nov; 8(11):2851-8. PubMed ID: 23943196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide.
    Kolen'ko YV; Kovnir KA; Gavrilov AI; Garshev AV; Frantti J; Lebedev OI; Churagulov BR; Van Tendeloo G; Yoshimura M
    J Phys Chem B; 2006 Mar; 110(9):4030-8. PubMed ID: 16509693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.
    Li G; Zhang D; Yu JC; Leung MK
    Environ Sci Technol; 2010 Jun; 44(11):4276-81. PubMed ID: 20459055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes.
    Zhang H; Wu J; Zhai C; Ma X; Du N; Tu J; Yang D
    Nanotechnology; 2008 Jan; 19(3):035711. PubMed ID: 21817596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of LiFe0.975Rh0.025PO4 nanorods using the hydrothermal method.
    Tong D; Li Y; Chu W; Wu P; Luo F
    Dalton Trans; 2011 Apr; 40(16):4087-94. PubMed ID: 21384030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method.
    Wu Z; Wang H; Liu Y; Gu Z
    J Hazard Mater; 2008 Feb; 151(1):17-25. PubMed ID: 17606324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries.
    Chen Y; Li X; Park K; Song J; Hong J; Zhou L; Mai YW; Huang H; Goodenough JB
    J Am Chem Soc; 2013 Nov; 135(44):16280-3. PubMed ID: 24144455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties.
    Liu H; Wang Y; Li H; Yang W; Zhou H
    Chemphyschem; 2010 Oct; 11(15):3273-80. PubMed ID: 20821793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties.
    Li Z; Bao H; Miao X; Chen X
    J Colloid Interface Sci; 2011 May; 357(2):286-91. PubMed ID: 21377162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of MoS(2) nanorods and their catalytic test in the HDS of dibenzothiophene.
    Albiter MA; Huirache-Acuña R; Paraguay-Delgado F; Rico JL; Alonso-Nuñez G
    Nanotechnology; 2006 Jul; 17(14):3473-81. PubMed ID: 19661592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries.
    Reddy MV; Prithvi G; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):680-90. PubMed ID: 24325322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity.
    Houskova V; Stengl V; Bakardjieva S; Murafa N; Kalendova A; Oplustil F
    J Phys Chem A; 2007 May; 111(20):4215-21. PubMed ID: 17461562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.