These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20972796)

  • 1. Morphological and physiological regeneration in the auditory system of adult Mecopoda elongata (Orthoptera: Tettigoniidae).
    Krüger S; Butler CS; Lakes-Harlan R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Feb; 197(2):181-92. PubMed ID: 20972796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoacoustic emissions in bushcricket ears: general characteristics and the influence of the neuroactive insecticide pymetrozine.
    Möckel D; Seyfarth EA; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Feb; 197(2):193-202. PubMed ID: 21052684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local prothoracic auditory neurons in Ensifera.
    Cillov A; Stumpner A
    Front Neurosci; 2022; 16():1087050. PubMed ID: 36620451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic Ca
    Bayley T; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 May; 210(3):353-369. PubMed ID: 37222786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.
    Hennig RM
    J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of the projection and synaptic connections of tympanic receptor fibers of Locusta migratoria (Orthoptera) after axotomy.
    Lakes R; Kalmring K
    J Neurobiol; 1991 Mar; 22(2):169-81. PubMed ID: 2030340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary afferent depolarization and frequency processing in auditory afferents.
    Baden T; Hedwig B
    J Neurosci; 2010 Nov; 30(44):14862-9. PubMed ID: 21048145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera, Tettigoniidae).
    Siegert ME; Römer H; Hashim R; Hartbauer M
    J Exp Biol; 2011 Dec; 214(Pt 23):3924-34. PubMed ID: 22071183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS.
    Killian KA; Murphey RK
    J Neurobiol; 1998 Dec; 37(4):700-14. PubMed ID: 9858269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of high-speed jumps in muscle and spring actuated systems: a comparative study of take-off energetics in bush-crickets (Mecopoda elongata) and locusts (Schistocerca gregaria).
    Goode CK; Woodrow C; Harrison SL; Deeming DC; Sutton GP
    J Comp Physiol B; 2023 Dec; 193(6):597-605. PubMed ID: 37857900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of intersegmental auditory neurons in a bush cricket.
    Stumpner A; Molina J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1359-76. PubMed ID: 16964494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimodality of auditory receptors in bush-crickets. Сontinued discussion. It's time to experiment.
    Zhantiev R; Korsunovskaya O
    J Exp Zool A Ecol Integr Physiol; 2023 Dec; 339(10):961-966. PubMed ID: 37559464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multielectrode array use in insect auditory neuroscience to unravel the spatio-temporal response pattern in the prothoracic ganglion of Mecopoda elongata.
    Scherberich J; Stange-Marten A; Schöneich S; Merdan-Desik M; Nowotny M
    J Exp Biol; 2024 Feb; 227(3):. PubMed ID: 38197244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket, Mecopoda elongata.
    Römer H; Hedwig B; Ott SR
    Eur J Neurosci; 2002 May; 15(10):1655-62. PubMed ID: 12059973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural coding of sound frequency by cricket auditory receptors.
    Imaizumi K; Pollack GS
    J Neurosci; 1999 Feb; 19(4):1508-16. PubMed ID: 9952426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.