BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20972797)

  • 21. Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype.
    Cheng WW; Tang CS; Gui HS; So MT; Lui VC; Tam PK; Garcia-Barcelo MM
    World J Gastroenterol; 2015 Feb; 21(7):2040-6. PubMed ID: 25717236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GFAP promoter drives Müller cell-specific expression in transgenic mice.
    Kuzmanovic M; Dudley VJ; Sarthy VP
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3606-13. PubMed ID: 12882814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish.
    Meng S; Ryu S; Zhao B; Zhang DQ; Driever W; McMahon DG
    Mol Vis; 2008; 14():2475-83. PubMed ID: 19112533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone marrow-derived cells expressing green fluorescent protein under the control of the glial fibrillary acidic protein promoter do not differentiate into astrocytes in vitro and in vivo.
    Wehner T; Böntert M; Eyüpoglu I; Prass K; Prinz M; Klett FF; Heinze M; Bechmann I; Nitsch R; Kirchhoff F; Kettenmann H; Dirnagl U; Priller J
    J Neurosci; 2003 Jun; 23(12):5004-11. PubMed ID: 12832523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia.
    von Boyen GB; Steinkamp M; Reinshagen M; Schäfer KH; Adler G; Kirsch J
    Gut; 2004 Feb; 53(2):222-8. PubMed ID: 14724154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediate filaments of zebrafish retinal and optic nerve astrocytes and Müller glia: differential distribution of cytokeratin and GFAP.
    Koke JR; Mosier AL; García DM
    BMC Res Notes; 2010 Mar; 3():50. PubMed ID: 20193075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Hlx homeobox transcription factor is required early in enteric nervous system development.
    Bates MD; Dunagan DT; Welch LC; Kaul A; Harvey RP
    BMC Dev Biol; 2006 Jul; 6():33. PubMed ID: 16854219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subtypes of hypoxia-responsive cells differentiate into neurons in spinal cord of zebrafish embryos after hypoxic stress.
    Zeng CW; Kamei Y; Wang CT; Tsai HJ
    Biol Cell; 2016 Dec; 108(12):357-377. PubMed ID: 27539672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos.
    Kim H; Shin J; Kim S; Poling J; Park HC; Appel B
    Dev Dyn; 2008 Aug; 237(8):2081-9. PubMed ID: 18627107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enteric GFAP expression and phosphorylation in Parkinson's disease.
    Clairembault T; Kamphuis W; Leclair-Visonneau L; Rolli-Derkinderen M; Coron E; Neunlist M; Hol EM; Derkinderen P
    J Neurochem; 2014 Sep; 130(6):805-15. PubMed ID: 24749759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional distribution of astrocytes in zebrafish spinal cord.
    Kawai H; Arata N; Nakayasu H
    Glia; 2001 Dec; 36(3):406-13. PubMed ID: 11746776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunohistochemical and ultrastructural analysis of the maturing larval zebrafish enteric nervous system reveals the formation of a neuropil pattern.
    Baker PA; Meyer MD; Tsang A; Uribe RA
    Sci Rep; 2019 May; 9(1):6941. PubMed ID: 31061452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of GFP-tagged GnRH-containing terminalis neurons in transgenic zebrafish.
    Wang X; Huang L; Li Y; Li X; Li P; Ray J; Li L
    J Cell Physiol; 2011 Mar; 226(3):608-15. PubMed ID: 20717967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enteric nervous system development in avian and zebrafish models.
    Heanue TA; Shepherd IT; Burns AJ
    Dev Biol; 2016 Sep; 417(2):129-38. PubMed ID: 27235814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system.
    Brun P; Giron MC; Qesari M; Porzionato A; Caputi V; Zoppellaro C; Banzato S; Grillo AR; Spagnol L; De Caro R; Pizzuti D; Barbieri V; Rosato A; Sturniolo GC; Martines D; Zaninotto G; Palù G; Castagliuolo I
    Gastroenterology; 2013 Dec; 145(6):1323-33. PubMed ID: 23994200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: relationship to brain-spinal descending systems.
    Barreiro-Iglesias A; Mysiak KS; Adrio F; Rodicio MC; Becker CG; Becker T; Anadón R
    J Comp Neurol; 2013 Feb; 521(2):389-425. PubMed ID: 22736487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system.
    Rühl A; Hoppe S; Frey I; Daniel H; Schemann M
    J Comp Neurol; 2005 Sep; 490(1):1-11. PubMed ID: 16041713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional components of the feline enteric nervous system.
    Kleinschmidt S; Nolte I; Hewicker-Trautwein M
    Anat Histol Embryol; 2011 Dec; 40(6):450-6. PubMed ID: 21671994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens.
    Kapitza C; Chunder R; Scheller A; Given KS; Macklin WB; Enders M; Kuerten S; Neuhuber WL; Wörl J
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.