BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20972888)

  • 1. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL; Lin CC; Ju MS; Liao JD
    Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode.
    Chang CH; Liao JD; Chen JJ; Ju MS; Lin CC
    Langmuir; 2004 Dec; 20(26):11656-63. PubMed ID: 15595795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study.
    Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A
    Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell adhesion and related phenomena on the surface-modified Au-deposited nerve microelectrode examined by total impedance measurement and cell detachment tests.
    Chang CH; Liao JD; Chen JJ; Ju MS; Lin CC
    Nanotechnology; 2006 May; 17(10):2449-57. PubMed ID: 21727489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.
    Widge AS; Jeffries-El M; Cui X; Lagenaur CF; Matsuoka Y
    Biosens Bioelectron; 2007 Mar; 22(8):1723-32. PubMed ID: 17015008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of electrode roughness on the capacitive behavior of self-assembled monolayers.
    Douglass EF; Driscoll PF; Liu D; Burnham NA; Lambert CR; McGimpsey WG
    Anal Chem; 2008 Oct; 80(20):7670-7. PubMed ID: 18811215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly.
    Lu M; Li XH; Yu BZ; Li HL
    J Colloid Interface Sci; 2002 Apr; 248(2):376-82. PubMed ID: 16290541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance and QCM analysis of the protein resistance of self-assembled PEGylated alkanethiol layers on gold.
    Menz B; Knerr R; Göpferich A; Steinem C
    Biomaterials; 2005 Jul; 26(20):4237-43. PubMed ID: 15683646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative electrochemical and impedance studies of self-assembled rigid-rod molecular wires and alkanethiols on gold substrates.
    Aguiar FA; Campos R; Wang C; Jitchati R; Batsanov AS; Bryce MR; Kataky R
    Phys Chem Chem Phys; 2010 Nov; 12(44):14804-11. PubMed ID: 20890500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold.
    Lu P; Walker AV
    Langmuir; 2007 Dec; 23(25):12577-82. PubMed ID: 17973508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odd-even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study.
    Srivastava P; Chapman WG; Laibinis PE
    Langmuir; 2005 Dec; 21(26):12171-8. PubMed ID: 16342989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior.
    Li L; Chen S; Zheng J; Ratner BD; Jiang S
    J Phys Chem B; 2005 Feb; 109(7):2934-41. PubMed ID: 16851306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.