These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 20972888)
1. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers. Lin HL; Lin CC; Ju MS; Liao JD Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888 [TBL] [Abstract][Full Text] [Related]
2. Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode. Chang CH; Liao JD; Chen JJ; Ju MS; Lin CC Langmuir; 2004 Dec; 20(26):11656-63. PubMed ID: 15595795 [TBL] [Abstract][Full Text] [Related]
3. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study. Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505 [TBL] [Abstract][Full Text] [Related]
4. Characterization of surface modification on microelectrode arrays for in vitro cell culture. Lin SP; Chen JJ; Liao JD; Tzeng SF Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208 [TBL] [Abstract][Full Text] [Related]
5. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays. Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904 [TBL] [Abstract][Full Text] [Related]
6. Cell adhesion and related phenomena on the surface-modified Au-deposited nerve microelectrode examined by total impedance measurement and cell detachment tests. Chang CH; Liao JD; Chen JJ; Ju MS; Lin CC Nanotechnology; 2006 May; 17(10):2449-57. PubMed ID: 21727489 [TBL] [Abstract][Full Text] [Related]
7. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
8. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Duan YY; Clark GM; Cowan RS Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Widge AS; Jeffries-El M; Cui X; Lagenaur CF; Matsuoka Y Biosens Bioelectron; 2007 Mar; 22(8):1723-32. PubMed ID: 17015008 [TBL] [Abstract][Full Text] [Related]
10. Effect of electrode roughness on the capacitive behavior of self-assembled monolayers. Douglass EF; Driscoll PF; Liu D; Burnham NA; Lambert CR; McGimpsey WG Anal Chem; 2008 Oct; 80(20):7670-7. PubMed ID: 18811215 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly. Lu M; Li XH; Yu BZ; Li HL J Colloid Interface Sci; 2002 Apr; 248(2):376-82. PubMed ID: 16290541 [TBL] [Abstract][Full Text] [Related]
12. Impedance characterization of microarray recording electrodes in vitro. Merrill DR; Tresco PA IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400 [TBL] [Abstract][Full Text] [Related]
13. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants. Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642 [TBL] [Abstract][Full Text] [Related]
14. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J; Yang L Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766 [TBL] [Abstract][Full Text] [Related]
15. Impedance and QCM analysis of the protein resistance of self-assembled PEGylated alkanethiol layers on gold. Menz B; Knerr R; Göpferich A; Steinem C Biomaterials; 2005 Jul; 26(20):4237-43. PubMed ID: 15683646 [TBL] [Abstract][Full Text] [Related]
16. Comparative electrochemical and impedance studies of self-assembled rigid-rod molecular wires and alkanethiols on gold substrates. Aguiar FA; Campos R; Wang C; Jitchati R; Batsanov AS; Bryce MR; Kataky R Phys Chem Chem Phys; 2010 Nov; 12(44):14804-11. PubMed ID: 20890500 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold. Lu P; Walker AV Langmuir; 2007 Dec; 23(25):12577-82. PubMed ID: 17973508 [TBL] [Abstract][Full Text] [Related]
18. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W; Yoshida K; Hofmann UG IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [TBL] [Abstract][Full Text] [Related]
19. Odd-even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study. Srivastava P; Chapman WG; Laibinis PE Langmuir; 2005 Dec; 21(26):12171-8. PubMed ID: 16342989 [TBL] [Abstract][Full Text] [Related]
20. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. Li L; Chen S; Zheng J; Ratner BD; Jiang S J Phys Chem B; 2005 Feb; 109(7):2934-41. PubMed ID: 16851306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]