These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 20973025)
1. Temperature-dependent prediction of the liquid entropy of ionic liquids. Preiss U; Emel'yanenko VN; Verevkin SP; Himmel D; Paulechka YU; Krossing I Chemphyschem; 2010 Nov; 11(16):3425-31. PubMed ID: 20973025 [TBL] [Abstract][Full Text] [Related]
2. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: a case study on 67 salts with a melting point range of 337 degrees C. Preiss U; Bulut S; Krossing I J Phys Chem B; 2010 Sep; 114(34):11133-40. PubMed ID: 20690695 [TBL] [Abstract][Full Text] [Related]
3. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. Krossing I; Slattery JM; Daguenet C; Dyson PJ; Oleinikova A; Weingärtner H J Am Chem Soc; 2006 Oct; 128(41):13427-34. PubMed ID: 17031955 [TBL] [Abstract][Full Text] [Related]
4. Going full circle: phase-transition thermodynamics of ionic liquids. Preiss U; Verevkin SP; Koslowski T; Krossing I Chemistry; 2011 May; 17(23):6508-17. PubMed ID: 21538602 [TBL] [Abstract][Full Text] [Related]
6. Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. Zhang S; Zhang Q; Ye B; Li X; Zhang X; Deng Y J Phys Chem B; 2009 Apr; 113(17):6012-9. PubMed ID: 19344104 [TBL] [Abstract][Full Text] [Related]
7. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE. Philippini V; Aupiais J; Vercouter T; Moulin C Electrophoresis; 2009 Oct; 30(20):3582-90. PubMed ID: 19784954 [TBL] [Abstract][Full Text] [Related]
8. Photochromism of nitrobenzospiropyran in phosphonium based ionic liquids. Byrne R; Coleman S; Fraser KJ; Raduta A; MacFarlane DR; Diamond D Phys Chem Chem Phys; 2009 Sep; 11(33):7286-91. PubMed ID: 19672540 [TBL] [Abstract][Full Text] [Related]
9. Single-ion entropies, S(ion)(o), of solids--a route to standard entropy estimation. Glasser L; Jenkins HD Inorg Chem; 2009 Aug; 48(15):7408-12. PubMed ID: 19580255 [TBL] [Abstract][Full Text] [Related]
10. Mutual solubilities of water and the [C(n)mim][Tf(2)N] hydrophobic ionic liquids. Freire MG; Carvalho PJ; Gardas RL; Marrucho IM; Santos LM; Coutinho JA J Phys Chem B; 2008 Feb; 112(6):1604-10. PubMed ID: 18201080 [TBL] [Abstract][Full Text] [Related]
11. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. Tong B; Liu QS; Tan ZC; Welz-Biermann U J Phys Chem A; 2010 Mar; 114(11):3782-7. PubMed ID: 20235601 [TBL] [Abstract][Full Text] [Related]
12. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations. Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of room-temperature ionic liquids with the weakly coordinating [Al(ORF)4]- anion (RF=C(H)(CF3)2) and the determination of their principal physical properties. Bulut S; Klose P; Huang MM; Weingärtner H; Dyson PJ; Laurenczy G; Friedrich C; Menz J; Kümmerer K; Krossing I Chemistry; 2010 Nov; 16(44):13139-54. PubMed ID: 20886467 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopic studies and ab initio calculations on conformational isomerism of 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)amide solvated to a lithium ion in ionic liquids: effects of the second solvation sphere of the lithium ion. Umebayashi Y; Mori S; Fujii K; Tsuzuki S; Seki S; Hayamizu K; Ishiguro S J Phys Chem B; 2010 May; 114(19):6513-21. PubMed ID: 20426444 [TBL] [Abstract][Full Text] [Related]
15. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids. Lovelock KR; Armstrong JP; Licence P; Jones RG Phys Chem Chem Phys; 2014 Jan; 16(4):1339-53. PubMed ID: 24105256 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamics of ionic liquid evaporation under vacuum. Horike S; Ayano M; Tsuno M; Fukushima T; Koshiba Y; Misaki M; Ishida K Phys Chem Chem Phys; 2018 Aug; 20(33):21262-21268. PubMed ID: 29952385 [TBL] [Abstract][Full Text] [Related]
17. A simple physical model for the simultaneous rationalisation of melting points and heat capacities of ionic liquids. Zvereva EE; Katsyuba SA; Dyson PJ Phys Chem Chem Phys; 2010 Nov; 12(41):13780-7. PubMed ID: 20852767 [TBL] [Abstract][Full Text] [Related]
18. Mutual solubilities of water and hydrophobic ionic liquids. Freire MG; Neves CM; Carvalho PJ; Gardas RL; Fernandes AM; Marrucho IM; Santos LM; Coutinho JA J Phys Chem B; 2007 Nov; 111(45):13082-9. PubMed ID: 17958353 [TBL] [Abstract][Full Text] [Related]
19. Predicting the critical micelle concentrations of aqueous solutions of ionic liquids and other ionic surfactants. Preiss U; Jungnickel C; Thöming J; Krossing I; Łuczak J; Diedenhofen M; Klamt A Chemistry; 2009 Sep; 15(35):8880-5. PubMed ID: 19630011 [TBL] [Abstract][Full Text] [Related]
20. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids. Eiden P; Bulut S; Köchner T; Friedrich C; Schubert T; Krossing I J Phys Chem B; 2011 Jan; 115(2):300-9. PubMed ID: 21138303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]