BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20973025)

  • 1. Temperature-dependent prediction of the liquid entropy of ionic liquids.
    Preiss U; Emel'yanenko VN; Verevkin SP; Himmel D; Paulechka YU; Krossing I
    Chemphyschem; 2010 Nov; 11(16):3425-31. PubMed ID: 20973025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: a case study on 67 salts with a melting point range of 337 degrees C.
    Preiss U; Bulut S; Krossing I
    J Phys Chem B; 2010 Sep; 114(34):11133-40. PubMed ID: 20690695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies.
    Krossing I; Slattery JM; Daguenet C; Dyson PJ; Oleinikova A; Weingärtner H
    J Am Chem Soc; 2006 Oct; 128(41):13427-34. PubMed ID: 17031955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going full circle: phase-transition thermodynamics of ionic liquids.
    Preiss U; Verevkin SP; Koslowski T; Krossing I
    Chemistry; 2011 May; 17(23):6508-17. PubMed ID: 21538602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer molecular probes for phosphonium ionic liquids.
    Byrne R; Coleman S; Gallagher S; Diamond D
    Phys Chem Chem Phys; 2010 Feb; 12(8):1895-904. PubMed ID: 20145857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion.
    Zhang S; Zhang Q; Ye B; Li X; Zhang X; Deng Y
    J Phys Chem B; 2009 Apr; 113(17):6012-9. PubMed ID: 19344104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE.
    Philippini V; Aupiais J; Vercouter T; Moulin C
    Electrophoresis; 2009 Oct; 30(20):3582-90. PubMed ID: 19784954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochromism of nitrobenzospiropyran in phosphonium based ionic liquids.
    Byrne R; Coleman S; Fraser KJ; Raduta A; MacFarlane DR; Diamond D
    Phys Chem Chem Phys; 2009 Sep; 11(33):7286-91. PubMed ID: 19672540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-ion entropies, S(ion)(o), of solids--a route to standard entropy estimation.
    Glasser L; Jenkins HD
    Inorg Chem; 2009 Aug; 48(15):7408-12. PubMed ID: 19580255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual solubilities of water and the [C(n)mim][Tf(2)N] hydrophobic ionic liquids.
    Freire MG; Carvalho PJ; Gardas RL; Marrucho IM; Santos LM; Coutinho JA
    J Phys Chem B; 2008 Feb; 112(6):1604-10. PubMed ID: 18201080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations.
    Tong B; Liu QS; Tan ZC; Welz-Biermann U
    J Phys Chem A; 2010 Mar; 114(11):3782-7. PubMed ID: 20235601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.
    Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N
    J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of room-temperature ionic liquids with the weakly coordinating [Al(ORF)4]- anion (RF=C(H)(CF3)2) and the determination of their principal physical properties.
    Bulut S; Klose P; Huang MM; Weingärtner H; Dyson PJ; Laurenczy G; Friedrich C; Menz J; Kümmerer K; Krossing I
    Chemistry; 2010 Nov; 16(44):13139-54. PubMed ID: 20886467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic studies and ab initio calculations on conformational isomerism of 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)amide solvated to a lithium ion in ionic liquids: effects of the second solvation sphere of the lithium ion.
    Umebayashi Y; Mori S; Fujii K; Tsuzuki S; Seki S; Hayamizu K; Ishiguro S
    J Phys Chem B; 2010 May; 114(19):6513-21. PubMed ID: 20426444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.
    Lovelock KR; Armstrong JP; Licence P; Jones RG
    Phys Chem Chem Phys; 2014 Jan; 16(4):1339-53. PubMed ID: 24105256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of ionic liquid evaporation under vacuum.
    Horike S; Ayano M; Tsuno M; Fukushima T; Koshiba Y; Misaki M; Ishida K
    Phys Chem Chem Phys; 2018 Aug; 20(33):21262-21268. PubMed ID: 29952385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple physical model for the simultaneous rationalisation of melting points and heat capacities of ionic liquids.
    Zvereva EE; Katsyuba SA; Dyson PJ
    Phys Chem Chem Phys; 2010 Nov; 12(41):13780-7. PubMed ID: 20852767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual solubilities of water and hydrophobic ionic liquids.
    Freire MG; Neves CM; Carvalho PJ; Gardas RL; Fernandes AM; Marrucho IM; Santos LM; Coutinho JA
    J Phys Chem B; 2007 Nov; 111(45):13082-9. PubMed ID: 17958353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the critical micelle concentrations of aqueous solutions of ionic liquids and other ionic surfactants.
    Preiss U; Jungnickel C; Thöming J; Krossing I; Łuczak J; Diedenhofen M; Klamt A
    Chemistry; 2009 Sep; 15(35):8880-5. PubMed ID: 19630011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids.
    Eiden P; Bulut S; Köchner T; Friedrich C; Schubert T; Krossing I
    J Phys Chem B; 2011 Jan; 115(2):300-9. PubMed ID: 21138303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.