These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 20973026)

  • 21. Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers.
    Trammell SA; Wang L; Zullo JM; Shashidhar R; Lebedev N
    Biosens Bioelectron; 2004 Jul; 19(12):1649-55. PubMed ID: 15142599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitation wavelength dependence of primary charge separation in reaction centers from Rhodobacter sphaeroides.
    Wang H; Lin S; Woodbury NW
    J Phys Chem B; 2008 Nov; 112(45):14296-301. PubMed ID: 18939793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A plausible mechanism of electron transfer between quinones in photosynthetic reaction centers.
    Peluso A; Di Donato M; Improta R; Saracino GA
    J Theor Biol; 2000 Nov; 207(1):101-5. PubMed ID: 11027482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].
    Biofizika; 2005; 50(4):668-75. PubMed ID: 16212058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Asn/His L166 on the hydrogen-bonding pattern and redox potential of the primary donor of purple bacterial reaction centers.
    Ivancich A; Mattioli TA
    Biochemistry; 1997 Mar; 36(10):3027-36. PubMed ID: 9062134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous silicon/photosynthetic reaction center hybrid nanostructure.
    Hajdu K; Gergely C; Martin M; Cloitre T; Zimányi L; Tenger K; Khoroshyy P; Palestino G; Agarwal V; Hernádi K; Németh Z; Nagy L
    Langmuir; 2012 Aug; 28(32):11866-73. PubMed ID: 22809391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of protein matrix motions in the Rb. sphaeroides photosynthetic reaction center.
    Stoica I
    J Mol Model; 2006 Mar; 12(4):468-80. PubMed ID: 16369794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The petite purple photosynthetic powerpack.
    Jones MR
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):400-7. PubMed ID: 19290870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR).
    Utschig LM; Thurnauer MC; Tiede DM; Poluektov OG
    Biochemistry; 2005 Nov; 44(43):14131-42. PubMed ID: 16245929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides.
    Johnson ET; Nagarajan V; Zazubovich V; Riley K; Small GJ; Parson WW
    Biochemistry; 2003 Nov; 42(46):13673-83. PubMed ID: 14622014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-linked electron transfer complex between cytochrome c2 and the photosynthetic reaction center of Rhodobacter sphaeroides.
    Drepper F; Dorlet P; Mathis P
    Biochemistry; 1997 Feb; 36(6):1418-27. PubMed ID: 9063890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A DNA-directed light-harvesting/reaction center system.
    Dutta PK; Levenberg S; Loskutov A; Jun D; Saer R; Beatty JT; Lin S; Liu Y; Woodbury NW; Yan H
    J Am Chem Soc; 2014 Nov; 136(47):16618-25. PubMed ID: 25340853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein engineering of the photoreaction centre from Rhodobacter sphaeroides.
    Ridge JP; Goodwin MG; Jones MR
    Biochem Soc Trans; 1998 Aug; 26(3):422-7. PubMed ID: 9765891
    [No Abstract]   [Full Text] [Related]  

  • 34. Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes.
    Boghossian AA; Choi JH; Ham MH; Strano MS
    Langmuir; 2011 Mar; 27(5):1599-609. PubMed ID: 21291272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range electrostatic interaction in the bacterial photosynthetic reaction centre.
    Maróti P; Hanson DK; Schiffer M; Sebban P
    Nat Struct Biol; 1995 Dec; 2(12):1057-9. PubMed ID: 8846215
    [No Abstract]   [Full Text] [Related]  

  • 36. How photosynthetic bacteria harvest solar energy.
    Cogdell RJ; Isaacs NW; Howard TD; McLuskey K; Fraser NJ; Prince SM
    J Bacteriol; 1999 Jul; 181(13):3869-79. PubMed ID: 10383951
    [No Abstract]   [Full Text] [Related]  

  • 37. Reversible charge separation in reaction centers of photosynthesis: a classical model.
    Yakovlev AG; Shuvalov VA
    Dokl Biochem Biophys; 2013; 450():143-6. PubMed ID: 23824456
    [No Abstract]   [Full Text] [Related]  

  • 38. Self-assembling photosynthetic reaction centers on electrodes for current generation.
    Nakamura C; Hasegawa M; Yasuda Y; Miyake J
    Appl Biochem Biotechnol; 2000; 84-86():401-8. PubMed ID: 10849806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: highlights on protein localization.
    Tangorra RR; Operamolla A; Milano F; Hassan Omar O; Henrard J; Comparelli R; Italiano F; Agostiano A; De Leo V; Marotta R; Falqui A; Farinola GM; Trotta M
    Photochem Photobiol Sci; 2015 Oct; 14(10):1844-52. PubMed ID: 26205482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides.
    Swainsbury DJ; Friebe VM; Frese RN; Jones MR
    Biosens Bioelectron; 2014 Aug; 58(100):172-8. PubMed ID: 24637165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.