These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 20973112)

  • 1. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 3. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G
    Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques.
    von Zur Muhlen C; von Elverfeldt D; Bassler N; Neudorfer I; Steitz B; Petri-Fink A; Hofmann H; Bode C; Peter K
    Atherosclerosis; 2007 Jul; 193(1):102-11. PubMed ID: 16997307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraperitoneal injection improves the uptake of nanoparticle-labeled high-density lipoprotein to atherosclerotic plaques compared with intravenous injection: a multimodal imaging study in ApoE knockout mice.
    Jung C; Kaul MG; Bruns OT; Dučić T; Freund B; Heine M; Reimer R; Meents A; Salmen SC; Weller H; Nielsen P; Adam G; Heeren J; Ittrich H
    Circ Cardiovasc Imaging; 2014 Mar; 7(2):303-11. PubMed ID: 24357264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions.
    Segers FM; den Adel B; Bot I; van der Graaf LM; van der Veer EP; Gonzalez W; Raynal I; de Winther M; Wodzig WK; Poelmann RE; van Berkel TJ; van der Weerd L; Biessen EA
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1812-9. PubMed ID: 23744990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma.
    Litovsky S; Madjid M; Zarrabi A; Casscells SW; Willerson JT; Naghavi M
    Circulation; 2003 Mar; 107(11):1545-9. PubMed ID: 12654614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging.
    Sigovan M; Kaye E; Lancelot E; Corot C; Provost N; Majd Z; Breisse M; Canet-Soulas E
    Invest Radiol; 2012 Sep; 47(9):546-52. PubMed ID: 22864378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI.
    Chan JM; Monaco C; Wylezinska-Arridge M; Tremoleda JL; Gibbs RG
    Eur J Vasc Endovasc Surg; 2014 May; 47(5):462-9. PubMed ID: 24594295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes.
    Puppi J; Mitry RR; Modo M; Dhawan A; Raja K; Hughes RD
    Cell Transplant; 2011; 20(6):963-75. PubMed ID: 21092412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice.
    Wen 文颂 S; Liu 柳东芳 DF; Liu 刘振 Z; Harris S; Yao 姚玉宇 YY; Ding 丁琪 Q; Nie 聂芳 F; Lu 卢瞳 T; Chen 陈华俊 HJ; An 安艳丽 YL; Zang 臧凤超 FC; Teng 滕皋军 GJ
    J Lipid Res; 2012 May; 53(5):829-838. PubMed ID: 22393161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques.
    Tu C; Ng TS; Sohi HK; Palko HA; House A; Jacobs RE; Louie AY
    Biomaterials; 2011 Oct; 32(29):7209-16. PubMed ID: 21742374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation.
    Liu G; Hu Y; Xiao J; Li X; Li Y; Tan H; Zhao Y; Cheng D; Shi H
    Sci Rep; 2016 Feb; 6():20900. PubMed ID: 26877097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment.
    Olzinski AR; Turner GH; Bernard RE; Karr H; Cornejo CA; Aravindhan K; Hoang B; Ringenberg MA; Qin P; Goodman KB; Willette RN; Macphee CH; Jucker BM; Sehon CA; Gough PJ
    Arterioscler Thromb Vasc Biol; 2010 Feb; 30(2):253-9. PubMed ID: 19965779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study on MR imaging of atherosclerotic plaque with SPIO marked endothelial cells in a rabbit model.
    Zhou Q; Yang KR; Gao P; Chen WL; Yang DY; Liang MJ; Zhu L
    J Magn Reson Imaging; 2011 Dec; 34(6):1325-32. PubMed ID: 21953575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.
    Scharlach C; Kratz H; Wiekhorst F; Warmuth C; Schnorr J; Genter G; Ebert M; Mueller S; Schellenberger E
    Nanomedicine; 2015 Jul; 11(5):1085-95. PubMed ID: 25659644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.
    Wu Q; Pan W; Wu G; Wu F; Guo Y; Zhang X
    Atherosclerosis; 2023 Mar; 369():17-26. PubMed ID: 36863196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer.
    Sterenczak KA; Meier M; Glage S; Meyer M; Willenbrock S; Wefstaedt P; Dorsch M; Bullerdiek J; Murua Escobar H; Hedrich H; Nolte I
    BMC Cancer; 2012 Jul; 12():284. PubMed ID: 22784304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives.
    Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.