These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 20973536)
1. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development. Marcon C; Schützenmeister A; Schütz W; Madlung J; Piepho HP; Hochholdinger F J Proteome Res; 2010 Dec; 9(12):6511-22. PubMed ID: 20973536 [TBL] [Abstract][Full Text] [Related]
2. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Hoecker N; Lamkemeyer T; Sarholz B; Paschold A; Fladerer C; Madlung J; Wurster K; Stahl M; Piepho HP; Nordheim A; Hochholdinger F Proteomics; 2008 Sep; 8(18):3882-94. PubMed ID: 18704907 [TBL] [Abstract][Full Text] [Related]
3. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of heterosis during maize seed germination. Fu Z; Jin X; Ding D; Li Y; Fu Z; Tang J Proteomics; 2011 Apr; 11(8):1462-72. PubMed ID: 21365753 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
8. Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids. Dahal D; Mooney BP; Newton KJ Plant J; 2012 Oct; 72(1):70-83. PubMed ID: 22607058 [TBL] [Abstract][Full Text] [Related]
9. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS. Marcon C; Lamkemeyer T; Malik WA; Ungrue D; Piepho HP; Hochholdinger F J Proteomics; 2013 Nov; 93():295-302. PubMed ID: 23607940 [TBL] [Abstract][Full Text] [Related]
10. Relationship Between Differential Gene Expression and Heterosis During Ear Development in Maize (Zea mays L.). Wang X; Cao H; Zhang D; Li B; He Y; Li J; Wang S J Genet Genomics; 2007 Feb; 34(2):160-70. PubMed ID: 17469788 [TBL] [Abstract][Full Text] [Related]
11. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Hoecker N; Keller B; Muthreich N; Chollet D; Descombes P; Piepho HP; Hochholdinger F Genetics; 2008 Jul; 179(3):1275-83. PubMed ID: 18562640 [TBL] [Abstract][Full Text] [Related]
12. Proteome analysis of maize seeds: the effect of artificial ageing. Xin X; Lin XH; Zhou YC; Chen XL; Liu X; Lu XX Physiol Plant; 2011 Oct; 143(2):126-38. PubMed ID: 21707636 [TBL] [Abstract][Full Text] [Related]
13. Genetic and environmental influence on maize kernel proteome. Anttonen MJ; Lehesranta S; Auriola S; Röhlig RM; Engel KH; Kärenlampi SO J Proteome Res; 2010 Dec; 9(12):6160-8. PubMed ID: 20968288 [TBL] [Abstract][Full Text] [Related]
14. Quantitative Proteomics of Zea mays Hybrids Exhibiting Different Levels of Heterosis. Dahal D; Newton KJ; Mooney BP J Proteome Res; 2016 Aug; 15(8):2445-54. PubMed ID: 27297264 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Sauer M; Jakob A; Nordheim A; Hochholdinger F Proteomics; 2006 Apr; 6(8):2530-41. PubMed ID: 16521151 [TBL] [Abstract][Full Text] [Related]
16. Relationship between differences of gene expression in early developing seeds of hybrid versus parents and heterosis in wheat. Xie XD; Ni ZF; Meng FR; Wu LM; Wang ZK; Sun QX Yi Chuan Xue Bao; 2003 Mar; 30(3):260-6. PubMed ID: 12812092 [TBL] [Abstract][Full Text] [Related]
17. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids. Ma Z; Qin Y; Wang Y; Zhao X; Zhang F; Tang J; Fu Z PLoS One; 2015; 10(12):e0144050. PubMed ID: 26630375 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of heterosis in the leaves of sorghum-sudangrass hybrids. Han P; Lu X; Mi F; Dong J; Xue C; Li J; Han B; Zhang X Acta Biochim Biophys Sin (Shanghai); 2016 Feb; 48(2):161-73. PubMed ID: 26792642 [TBL] [Abstract][Full Text] [Related]
19. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633 [TBL] [Abstract][Full Text] [Related]
20. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. Jain M; Li QB; Chourey PS Physiol Plant; 2008 Sep; 134(1):161-73. PubMed ID: 18433416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]