These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20973898)

  • 21. Scleral penetration force requirements for commonly used intravitreal needles.
    Pulido JS; Zobitz ME; An KN
    Eye (Lond); 2007 Sep; 21(9):1210-1. PubMed ID: 16946745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial contamination of needles used for intravitreal injections: a prospective, multicenter study.
    Stewart JM; Srivastava SK; Fung AE; Mahmoud TH; Telander DG; Hariprasad SM; Ober MD; Mruthyunjaya P
    Ocul Immunol Inflamm; 2011 Feb; 19(1):32-8. PubMed ID: 21034310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternative technique for reducing compound waste during intravitreal injections.
    Ribeiro JA; Messias A; Scott IU; Jorge R
    Arq Bras Oftalmol; 2009; 72(5):641-4. PubMed ID: 20027401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Needle size in intravitreal injections - pain evaluation of a randomized clinical trial.
    Haas P; Falkner-Radler C; Wimpissinger B; Malina M; Binder S
    Acta Ophthalmol; 2016 Mar; 94(2):198-202. PubMed ID: 26521866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of novel guarded needle to increase patient comfort and decrease injection time during intravitreal injection.
    Eaton AM; Gordon GM; Wafapoor H; Sgarlata A; Avery RL
    Ophthalmic Surg Lasers Imaging Retina; 2013 Nov; 44(6):561-8. PubMed ID: 24221463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release of silicone oil and the off-label use of syringes in ophthalmology.
    Melo GB; Emerson GG; Dias CS; Morais FB; Lima Filho AS; Ota S; Farah ME; Rodrigues EB; Maia M; Belfort R
    Br J Ophthalmol; 2020 Feb; 104(2):291-296. PubMed ID: 30910872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Polymeric Syringes Used for Intravitreal Injection.
    Peláez SS; Mahler HC; Koulov A; Joerg S; Matter A; Vogt M; Chalus P; Zaeh M; Sediq AS; Jere D; Mathaes R
    J Pharm Sci; 2020 Sep; 109(9):2812-2818. PubMed ID: 32534032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing the risk of unsafe injections in immunization programmes: financial and operational implications of various injection technologies.
    Aylward B; Lloyd J; Zaffran M; McNair-Scott R; Evans P
    Bull World Health Organ; 1995; 73(4):531-40. PubMed ID: 7554027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intravitreally Injected Fluid Dispersion: Importance of Injection Technique.
    Willekens K; Reyns G; Diricx M; Vanhove M; Noppen B; Coudyzer W; Ni Y; Feyen JH; Stalmans P
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1434-1441. PubMed ID: 28264098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vitreous Reflux Frequency and Intraocular Pressure After First-Time Intravitreal Aflibercept Injections: Comparison of 30- and 32-Gauge Needles.
    Muto T; Machida S
    Clin Ophthalmol; 2020; 14():625-634. PubMed ID: 32184551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High particle variability across siliconized and oil-free syringes and needles from the same lots.
    do Monte Agra LL; da Cruz NFS; Linkuviene V; Carpenter JF; Farah ME; Melo GB; Maia M
    Sci Rep; 2021 Feb; 11(1):4645. PubMed ID: 33633285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tower microneedle via reverse drawing lithography for innocuous intravitreal drug delivery.
    Lee CY; Lee K; You YS; Lee SH; Jung H
    Adv Healthc Mater; 2013 Jun; 2(6):812-6. PubMed ID: 23209023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of hypodermic needle dimensions on subcutaneous injection delivery--a pig study of injection deposition evaluated by CT scanning, histology, and backflow.
    Juul KA; Bengtsson H; Eyving B; Kildegaard J; Lav S; Poulsen M; Serup J; Stallknecht B
    Skin Res Technol; 2012 Nov; 18(4):447-55. PubMed ID: 22233448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in syringes and needles dead space compared to the International Organization for Standardization standard 7886-1:2018.
    Cambruzzi M; Macfarlane P
    Vet Anaesth Analg; 2021 Jul; 48(4):532-536. PubMed ID: 34059461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Container Closure and Delivery Considerations for Intravitreal Drug Administration.
    Parenky AC; Wadhwa S; Chen HH; Bhalla AS; Graham KS; Shameem M
    AAPS PharmSciTech; 2021 Mar; 22(3):100. PubMed ID: 33709236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A calipers-free intravitreal anti-VEGF injection technique.
    Oztas Z; Akkin C; Afrashi F; Selim S
    Arq Bras Oftalmol; 2015; 78(2):133-4. PubMed ID: 25945539
    [No Abstract]   [Full Text] [Related]  

  • 37. Needle contamination in the setting of intravitreal injections.
    Friedman DA; Lindquist TP; Mason JO; McGwin G
    Retina; 2014 May; 34(5):929-34. PubMed ID: 24509487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Formulation Parameters on Intravitreal Dosing Accuracy Using 1 mL Hypodermic Syringes.
    Weinmann C; Sediq AS; Vogt M; Mahler HC; Joerg S; Rodriguez S; Mathaes R; Jere D
    Pharm Res; 2020 Sep; 37(10):190. PubMed ID: 32895773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial contamination of re-usable and disposable syringes and needles.
    Danchaivijitr S; Leelaporn A; Kongsamran S
    J Med Assoc Thai; 1989 Jul; 72 Suppl 2():26-8. PubMed ID: 2769128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of syringe material and needle size on the minimum plunger-displacement pressure of arterial blood gas syringes.
    Ansel GM; Douce FH
    Respir Care; 1982 Feb; 27(2):147-51. PubMed ID: 10315159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.