These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 209739)

  • 1. Metabolic activation and hepatotoxicity. Toxicity of bromobenzene in hepatocytes isolated from phenobarbital-and diethylmaleate-treated rats.
    Thor J; Moldéus P; Hermanson R; Högberg J; Reed DJ; Orrenius S
    Arch Biochem Biophys; 1978 May; 188(1):122-9. PubMed ID: 209739
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic activation and hepatotoxicity. Effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes.
    Thor H; Moldéus P; Orrenius S
    Arch Biochem Biophys; 1979 Feb; 192(2):405-13. PubMed ID: 434834
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic activation and hepatotoxicity. Metabolism of bromobenzene in isolated hypatocytes.
    Thor H; Moldéus P; Kristoferson A; Högberg J; Reed DJ; Orrenius S
    Arch Biochem Biophys; 1978 May; 188(1):114-21. PubMed ID: 28083
    [No Abstract]   [Full Text] [Related]  

  • 4. Drug biotransformation and hepatotoxicity. Studies with bromobenzene in isolated hepatocytes.
    Thor H; Moldéus P; Högberg J; Hermanson R; Reed DJ; Orrenius S
    Arch Toxicol Suppl; 1978; (1):107-14. PubMed ID: 277089
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of phenobarbital and diethyl maleate on carbon tetrachloride toxicity in isolated rat hepatocytes.
    Lindstrom TD; Anders MW; Remmer H
    Exp Mol Pathol; 1978 Feb; 28(1):48-57. PubMed ID: 620759
    [No Abstract]   [Full Text] [Related]  

  • 6. Biotransformation of bromobenzene to reactive metabolites by isolated hepatocytes.
    Thor H; Svensson SA; Hartzell P; Orrenius S
    Adv Exp Med Biol; 1981; 136 Pt A():287-99. PubMed ID: 7344462
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of 4-bromophenol and 4-bromocatechol in bromobenzene covalent binding and toxicity in isolated rat hepatocytes.
    Dankovic DA; Billings RE
    Toxicol Appl Pharmacol; 1985 Jun; 79(2):323-31. PubMed ID: 4002232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and half-life of bromobenzene-3,4-oxide in blood.
    Lau SS; Monks TJ; Greene KE; Gillette JR
    Xenobiotica; 1984 Jul; 14(7):539-43. PubMed ID: 6506767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.
    Jollow DJ; Mitchell JR; Zampaglione N; Gillette JR
    Pharmacology; 1974; 11(3):151-69. PubMed ID: 4831804
    [No Abstract]   [Full Text] [Related]  

  • 10. Bromobenzene metabolism in vivo and in vitro. The mechanism of 4-bromocatechol formation.
    Miller NE; Thomas D; Billings RE
    Drug Metab Dispos; 1990; 18(3):304-8. PubMed ID: 1974190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromobenzene metabolism in isolated rat hepatocytes. 18O2 incorporation studies.
    Dankovic D; Billings RE; Seifert W; Stillwell WG
    Mol Pharmacol; 1985 Feb; 27(2):287-95. PubMed ID: 3969072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bromobenzene-glutathione excretion into bile reflects toxic activation of bromobenzene in rats.
    Madhu C; Klaassen CD
    Toxicol Lett; 1992 Apr; 60(2):227-36. PubMed ID: 1570637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-stimulated H2O2 formation in hepatocytes. Possible toxicological implications.
    Orrenius S; Thor H; Eklöw L; Moldéus P; Jones DP
    Adv Exp Med Biol; 1981; 136 Pt A():395-405. PubMed ID: 7344471
    [No Abstract]   [Full Text] [Related]  

  • 14. Macromolecular weight specificity in covalent binding of bromobenzene.
    Sun JD; Dent JG
    Toxicol Appl Pharmacol; 1984 Nov; 76(2):243-51. PubMed ID: 6495332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel method for measuring covalent binding and its application to investigations of bromobenzene hepatotoxicity.
    Dent JG; Sun JD
    Adv Exp Med Biol; 1981; 136 Pt A():275-85. PubMed ID: 7344461
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of cysteine, diethyl maleate, and phenobarbital treatments on the hepatotoxicity of [1H]chloroform.
    Stevens JL; Anders MW
    Chem Biol Interact; 1981 Oct; 37(1-2):207-17. PubMed ID: 7285244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of acute hepatic toxicity: chloroform, halothane, and glutathione.
    Brown BR; Sipes IG; Sagalyn AM
    Anesthesiology; 1974 Dec; 41(6):554-61. PubMed ID: 4433055
    [No Abstract]   [Full Text] [Related]  

  • 18. Liver glutathione depletion induced by bromobenzene, iodobenzene, and diethylmaleate poisoning and its relation to lipid peroxidation and necrosis.
    Casini AF; Pompella A; Comporti M
    Am J Pathol; 1985 Feb; 118(2):225-37. PubMed ID: 3970139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,3-(2-Chloroethyl)-1-nitrosourea potentiates the toxicity of acetaminophen both in the phenobarbital-induced rat and in hepatocytes cultured from such animals.
    Kyle ME; Nakae D; Serroni A; Farber JL
    Mol Pharmacol; 1988 Oct; 34(4):584-9. PubMed ID: 3173337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of glutathione in chloroform-induced hepatotoxicity.
    Docks EL; Krishna G
    Exp Mol Pathol; 1976 Feb; 24(1):13-22. PubMed ID: 1253933
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.