These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 20973963)
1. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Smallegange RC; Schmied WH; van Roey KJ; Verhulst NO; Spitzen J; Mukabana WR; Takken W Malar J; 2010 Oct; 9():292. PubMed ID: 20973963 [TBL] [Abstract][Full Text] [Related]
2. 2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus. Mburu MM; Mweresa CK; Omusula P; Hiscox A; Takken W; Mukabana WR Malar J; 2017 Aug; 16(1):351. PubMed ID: 28836977 [TBL] [Abstract][Full Text] [Related]
3. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Mweresa CK; Omusula P; Otieno B; van Loon JJ; Takken W; Mukabana WR Malar J; 2014 Apr; 13():160. PubMed ID: 24767543 [TBL] [Abstract][Full Text] [Related]
4. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus in the field. Torr SJ; Della Torre A; Calzetta M; Costantini C; Vale GA Med Vet Entomol; 2008 Jun; 22(2):93-108. PubMed ID: 18498608 [TBL] [Abstract][Full Text] [Related]
5. Mosquito host preferences affect their response to synthetic and natural odour blends. Busula AO; Takken W; Loy DE; Hahn BH; Mukabana WR; Verhulst NO Malar J; 2015 Mar; 14():133. PubMed ID: 25889954 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Schmied WH; Takken W; Killeen GF; Knols BG; Smallegange RC Malar J; 2008 Nov; 7():230. PubMed ID: 18980669 [TBL] [Abstract][Full Text] [Related]
7. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Njiru BN; Mukabana WR; Takken W; Knols BG Malar J; 2006 May; 5():39. PubMed ID: 16700902 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Degefa T; Yewhalaw D; Zhou G; Atieli H; Githeko AK; Yan G Malar J; 2020 May; 19(1):174. PubMed ID: 32381009 [TBL] [Abstract][Full Text] [Related]
9. Mosquito responses to carbon dioxide in a west African Sudan savanna village. Costantini C; Gibson G; Sagnon N; Della Torre A; Brady J; Coluzzi M Med Vet Entomol; 1996 Jul; 10(3):220-7. PubMed ID: 8887331 [TBL] [Abstract][Full Text] [Related]
10. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages. Batista EPA; Ngowo H; Opiyo M; Shubis GK; Meza FC; Siria DJ; Eiras AE; Okumu FO PLoS One; 2018; 13(10):e0205358. PubMed ID: 30296287 [TBL] [Abstract][Full Text] [Related]
11. The MTego trap: a potential tool for monitoring malaria and arbovirus vectors. Maasayi MS; Machange JJ; Kamande DS; Kibondo UA; Odufuwa OG; Moore SJ; Tambwe MM Parasit Vectors; 2023 Jun; 16(1):212. PubMed ID: 37370169 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a push-pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors. Mmbando AS; Batista EPA; Kilalangongono M; Finda MF; Mwanga EP; Kaindoa EW; Kifungo K; Njalambaha RM; Ngowo HS; Eiras AE; Okumu FO Malar J; 2019 Mar; 18(1):87. PubMed ID: 30894185 [TBL] [Abstract][Full Text] [Related]
14. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Costantini C; Birkett MA; Gibson G; Ziesmann J; Sagnon NF; Mohammed HA; Coluzzi M; Pickett JA Med Vet Entomol; 2001 Sep; 15(3):259-66. PubMed ID: 11583442 [TBL] [Abstract][Full Text] [Related]
15. Evaluating synthetic odours and trap designs for monitoring Anopheles farauti in Queensland, Australia. van de Straat B; Hiscox A; Takken W; Burkot TR Malar J; 2019 Sep; 18(1):299. PubMed ID: 31477123 [TBL] [Abstract][Full Text] [Related]
16. Comparative efficacy of BG-Sentinel 2 and CDC-like mosquito traps for monitoring potential malaria vectors in Europe. Bertola M; Fornasiero D; Sgubin S; Mazzon L; Pombi M; Montarsi F Parasit Vectors; 2022 May; 15(1):160. PubMed ID: 35526068 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Attraction of African Malaria Vectors to a Synthetic Odor Blend. Mweresa CK; Mukabana WR; Omusula P; Otieno B; Van Loon JJ; Takken W J Chem Ecol; 2016 Jun; 42(6):508-16. PubMed ID: 27349651 [TBL] [Abstract][Full Text] [Related]
18. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps. Sukumaran D; Ponmariappan S; Sharma AK; Jha HK; Wasu YH; Sharma AK Parasitol Res; 2016 Apr; 115(4):1453-62. PubMed ID: 26677098 [TBL] [Abstract][Full Text] [Related]
19. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Verhulst NO; Mbadi PA; Kiss GB; Mukabana WR; van Loon JJ; Takken W; Smallegange RC Malar J; 2011 Feb; 10():28. PubMed ID: 21303496 [TBL] [Abstract][Full Text] [Related]
20. Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Debebe Y; Hill SR; Birgersson G; Tekie H; Ignell R Malar J; 2020 Sep; 19(1):327. PubMed ID: 32887614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]