BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 20973990)

  • 1. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants.
    Henriques SF; Mira NP; Sá-Correia I
    Biotechnol Biofuels; 2017; 10():96. PubMed ID: 28428821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach.
    Teixeira MC; Raposo LR; Palma M; Sá-Correia I
    OMICS; 2010 Apr; 14(2):201-10. PubMed ID: 20210661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.
    Pereira FB; Teixeira MC; Mira NP; Sá-Correia I; Domingues L
    J Ind Microbiol Biotechnol; 2014 Dec; 41(12):1753-61. PubMed ID: 25287021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
    Samakkarn W; Vandecruys P; Moreno MRF; Thevelein J; Ratanakhanokchai K; Soontorngun N
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):153. PubMed ID: 38240846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.
    Hasunuma T; Sanda T; Yamada R; Yoshimura K; Ishii J; Kondo A
    Microb Cell Fact; 2011 Jan; 10(1):2. PubMed ID: 21219616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.
    Guerreiro JF; Muir A; Ramachandran S; Thorner J; Sá-Correia I
    Biochem J; 2016 Dec; 473(23):4311-4325. PubMed ID: 27671892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetic acid stress in budding yeast: From molecular mechanisms to applications.
    Guaragnella N; Bettiga M
    Yeast; 2021 Jul; 38(7):391-400. PubMed ID: 34000094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
    Sousa M; Duarte AM; Fernandes TR; Chaves SR; Pacheco A; Leão C; Côrte-Real M; Sousa MJ
    BMC Genomics; 2013 Nov; 14(1):838. PubMed ID: 24286259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae.
    Songdech P; Ruchala J; Semkiv MV; Jensen LT; Sibirny A; Ratanakhanokchai K; Soontorngun N
    Biotechnol J; 2020 Jul; 15(7):e1900492. PubMed ID: 32196937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.
    Hasunuma T; Sakamoto T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1027-38. PubMed ID: 26521247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.