BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20974142)

  • 21. Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002.
    Pérez AA; Rodionov DA; Bryant DA
    J Bacteriol; 2016 Oct; 198(19):2753-61. PubMed ID: 27457716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol.
    Hagemann M; Ribbeck-Busch K; Klähn S; Hasse D; Steinbruch R; Berg G
    J Bacteriol; 2008 Sep; 190(17):5898-906. PubMed ID: 18586931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR.
    Woodger FJ; Bryant DA; Price GD
    J Bacteriol; 2007 May; 189(9):3335-47. PubMed ID: 17307862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants.
    Nagao M; Uemura M
    Planta; 2012 Apr; 235(4):851-61. PubMed ID: 22095241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa.
    Padhi S; Grimes MM; Muro-Villanueva F; Ortega JL; Sengupta-Gopalan C
    Planta; 2019 Nov; 250(5):1743-1755. PubMed ID: 31422508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.
    Yang Y; Feng J; Li T; Ge F; Zhao J
    Database (Oxford); 2015; 2015():. PubMed ID: 25632108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of two two-component signal transduction mutants with enhanced sucrose biosynthesis in Synechococcus elongatus PCC 7942.
    Qiao C; Zhang M; Luo Q; Lu X
    J Basic Microbiol; 2019 May; 59(5):465-476. PubMed ID: 30802333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A prokaryotic sucrose synthase gene (susA) isolated from a filamentous nitrogen-fixing cyanobacterium encodes a protein similar to those of plants.
    Curatti L; Porchia AC; Herrera-Estrella L; Salerno GL
    Planta; 2000 Oct; 211(5):729-35. PubMed ID: 11089687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp.
    Kamennaya NA; Post AF
    Appl Environ Microbiol; 2011 Jan; 77(1):291-301. PubMed ID: 21057026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.
    Solís-Guzmán MG; Argüello-Astorga G; López-Bucio J; Ruiz-Herrera LF; López-Meza JE; Sánchez-Calderón L; Carreón-Abud Y; Martínez-Trujillo M
    Gene Expr Patterns; 2017 Nov; 25-26():92-101. PubMed ID: 28642207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell.
    Fieulaine S; Lunn JE; Borel F; Ferrer JL
    Plant Cell; 2005 Jul; 17(7):2049-58. PubMed ID: 15937230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning and disruption of a novel gene encoding UDP-glucose: tetrahydrobiopterin alpha-glucosyltransferase in the cyanobacterium Synechococcus sp. PCC 7942.
    Choi YK; Hwang YK; Park YS
    FEBS Lett; 2001 Aug; 502(3):73-8. PubMed ID: 11583114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes.
    Sugita M; Sugishita H; Fujishiro T; Tsuboi M; Sugita C; Endo T; Sugiura M
    Gene; 1997 Aug; 195(1):73-9. PubMed ID: 9300823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.
    Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sucrose-phosphate phosphatase from Anabaena sp. strain PCC 7120: isolation of the protein and gene revealed significant structural differences from the higher-plant enzyme.
    Cumino A; Ekeroth C; Salerno GL
    Planta; 2001 Dec; 214(2):250-6. PubMed ID: 11800389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization and transcription of a putative gene cluster encoding ribosomal protein S14 and an oligopeptide permease-like protein in the cyanobacterium Synechococcus sp. strain PCC 6301.
    Fujishiro T; Kaneko T; Sugiura M; Sugita M
    DNA Res; 1996 Jun; 3(3):165-9. PubMed ID: 8905234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress.
    Kolman MA; Torres LL; Martin ML; Salerno GL
    Planta; 2012 May; 235(5):955-64. PubMed ID: 22113826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and characterization of the Cerasus humilis sucrose phosphate synthase gene (ChSPS1).
    Wang J; Du J; Mu X; Wang P
    PLoS One; 2017; 12(10):e0186650. PubMed ID: 29036229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The tricarboxylic acid cycle in cyanobacteria.
    Zhang S; Bryant DA
    Science; 2011 Dec; 334(6062):1551-3. PubMed ID: 22174252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes.
    Winter H; Huber SC
    Crit Rev Biochem Mol Biol; 2000; 35(4):253-89. PubMed ID: 11005202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.