BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20974310)

  • 1. Beneficial effects of chelidonic acid on a model of allergic rhinitis.
    Oh HA; Kim HM; Jeong HJ
    Int Immunopharmacol; 2011 Jan; 11(1):39-45. PubMed ID: 20974310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions.
    Oh HA; Park CS; Ahn HJ; Park YS; Kim HM
    Exp Biol Med (Maywood); 2011 Jan; 236(1):99-106. PubMed ID: 21239739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model.
    Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N
    Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro.
    Oh HA; Kim HM; Jeong HJ
    J Pharmacol Exp Ther; 2011 Oct; 339(1):72-81. PubMed ID: 21730010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis.
    Nam SY; Chung CK; Seo JH; Rah SY; Kim HM; Jeong HJ
    Int Immunopharmacol; 2014 Nov; 23(1):273-82. PubMed ID: 25242385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bamboo salt reduces allergic responses by modulating the caspase-1 activation in an OVA-induced allergic rhinitis mouse model.
    Kim KY; Nam SY; Shin TY; Park KY; Jeong HJ; Kim HM
    Food Chem Toxicol; 2012 Oct; 50(10):3480-8. PubMed ID: 22824089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the effect of kaempferol in a murine allergic rhinitis model.
    Oh HA; Han NR; Kim MJ; Kim HM; Jeong HJ
    Eur J Pharmacol; 2013 Oct; 718(1-3):48-56. PubMed ID: 24056122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topical levamisole hydrochloride therapy attenuates experimental murine allergic rhinitis.
    Wang H; Zhang J; Gao C; Zhu Y; Wang C; Zheng W
    Eur J Pharmacol; 2007 Dec; 577(1-3):162-9. PubMed ID: 17935711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide as a new lead compound for management of allergic rhinitis.
    Kim HY; Nam SY; Jang JB; Choi Y; Kang IC; Kim HM; Jeong HJ
    Inflamm Res; 2016 Dec; 65(12):963-973. PubMed ID: 27516212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IFATS collection: Immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model.
    Cho KS; Park HK; Park HY; Jung JS; Jeon SG; Kim YK; Roh HJ
    Stem Cells; 2009 Jan; 27(1):259-65. PubMed ID: 18832595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis by Naju Jjok (Polygonum tinctorium).
    Jeong HJ; Oh HA; Lee BJ; Kim HM
    Int J Mol Med; 2014 Jan; 33(1):142-50. PubMed ID: 24190435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 5-aminosalicylate on allergic rhinitis model in mice.
    Kuyama S; Yamamoto A; Sugiyama M; Kakuta H; Sugimoto Y
    Int Immunopharmacol; 2010 Jun; 10(6):713-6. PubMed ID: 20304104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-allergic effects of Lactobacillus crispatus KT-11 strain on ovalbumin-sensitized BALB/c mice.
    Tobita K; Yanaka H; Otani H
    Anim Sci J; 2010 Dec; 81(6):699-705. PubMed ID: 21108691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of interleukin 17A to the development and regulation of allergic inflammation in a murine allergic rhinitis model.
    Quan SH; Zhang YL; Han DH; Iwakura Y; Rhee CS
    Ann Allergy Asthma Immunol; 2012 May; 108(5):342-50. PubMed ID: 22541406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ameliorative effect of AST2017-01 in an ovalbumin-induced allergic rhinitis animal model.
    Kim HY; Jee H; Yeom JH; Jeong HJ; Kim HM
    Inflamm Res; 2019 May; 68(5):387-395. PubMed ID: 30874868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of T-helper type 1/2 cell balance by anticholinergic treatment in allergic mice.
    Daoud A; Xie Z; Ma Y; Wang T; Tan G
    Ann Allergy Asthma Immunol; 2014 Mar; 112(3):249-55. PubMed ID: 24428969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antidepressant drug, desipramine, alleviates allergic rhinitis by regulating Treg and Th17 cells.
    Zhang Y; Zhen H; Yao W; Bian F; Mao X; Yang X; Jin S
    Int J Immunopathol Pharmacol; 2013; 26(1):107-15. PubMed ID: 23527713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisome proliferator-activated receptor gamma negatively regulates allergic rhinitis in mice.
    Fukui N; Honda K; Ito E; Ishikawa K
    Allergol Int; 2009 Jun; 58(2):247-53. PubMed ID: 19307774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiallergic effect of gami-hyunggyeyeongyotang on ovalbumin-induced allergic rhinitis in mouse and human mast cells.
    Im YS; Lee B; Kim EY; Min JH; Song DU; Lim JM; Eom JW; Cho HJ; Sohn Y; Jung HS
    J Chin Med Assoc; 2016 Apr; 79(4):185-94. PubMed ID: 26852212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of baicalin on allergic response in ovalbumin-induced allergic rhinitis guinea pigs and lipopolysaccharide-stimulated human mast cells.
    Zhou YJ; Wang H; Sui HH; Li L; Zhou CL; Huang JJ
    Inflamm Res; 2016 Aug; 65(8):603-12. PubMed ID: 27043920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.