These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20974475)
1. Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. Wang J; Han Y J Colloid Interface Sci; 2011 Jan; 353(2):498-505. PubMed ID: 20974475 [TBL] [Abstract][Full Text] [Related]
2. Tunable multicolor pattern and stop-band shift based on inverse opal hydrogel heterostructure. Wang J; Han Y J Colloid Interface Sci; 2011 May; 357(1):139-46. PubMed ID: 21353231 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. Jang SS; Goddard WA; Kalani MY J Phys Chem B; 2007 Feb; 111(7):1729-37. PubMed ID: 17249716 [TBL] [Abstract][Full Text] [Related]
4. Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel. Shin J; Han SG; Lee W Anal Chim Acta; 2012 Nov; 752():87-93. PubMed ID: 23101656 [TBL] [Abstract][Full Text] [Related]
5. Tunable multiresponsive methacrylic acid based inverse opal hydrogels prepared by controlling the synthesis conditions. Wang J; Han Y Langmuir; 2009 Feb; 25(3):1855-64. PubMed ID: 19132831 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic interactions in double-network hydrogels. Tominaga T; Tirumala VR; Lee S; Lin EK; Gong JP; Wu WL J Phys Chem B; 2008 Apr; 112(13):3903-9. PubMed ID: 18331022 [TBL] [Abstract][Full Text] [Related]
7. Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Wang J; Hu Y; Deng R; Liang R; Li W; Liu S; Zhu J Langmuir; 2013 Jul; 29(28):8825-34. PubMed ID: 23768084 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional inverse opal hydrogel for pH sensing. Xue F; Meng Z; Qi F; Xue M; Wang F; Chen W; Yan Z Analyst; 2014 Dec; 139(23):6192-6. PubMed ID: 25292208 [TBL] [Abstract][Full Text] [Related]
9. Effect of polymer entanglement on the toughening of double network hydrogels. Tsukeshiba H; Huang M; Na YH; Kurokawa T; Kuwabara R; Tanaka Y; Furukawa H; Osada Y; Gong JP J Phys Chem B; 2005 Sep; 109(34):16304-9. PubMed ID: 16853073 [TBL] [Abstract][Full Text] [Related]
10. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. Li Z; Su Y; Xie B; Liu X; Gao X; Wang D J Mater Chem B; 2015 Mar; 3(9):1769-1778. PubMed ID: 32262250 [TBL] [Abstract][Full Text] [Related]
11. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Griffete N; Frederich H; MaƮtre A; Ravaine S; Chehimi MM; Mangeney C Langmuir; 2012 Jan; 28(1):1005-12. PubMed ID: 22088132 [TBL] [Abstract][Full Text] [Related]
12. Cell adhesion and proliferation on poly(N-vinylacetamide) hydrogels and double network approaches for changing cellular affinities. Ajiro H; Watanabe J; Akashi M Biomacromolecules; 2008 Feb; 9(2):426-30. PubMed ID: 18179172 [TBL] [Abstract][Full Text] [Related]
14. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs. Yang Z; Zhang Y; Markland P; Yang VC J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782 [TBL] [Abstract][Full Text] [Related]
15. Low-velocity super-lubrication of sodium-alginate/polyacrylamide ionic-covalent hybrid double-network hydrogels. Li X; Wu C; Yang Q; Long S; Wu C Soft Matter; 2015 Apr; 11(15):3022-33. PubMed ID: 25735912 [TBL] [Abstract][Full Text] [Related]
16. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767 [TBL] [Abstract][Full Text] [Related]
17. High strength and self-healable gelatin/polyacrylamide double network hydrogels. Yan X; Chen Q; Zhu L; Chen H; Wei D; Chen F; Tang Z; Yang J; Zheng J J Mater Chem B; 2017 Oct; 5(37):7683-7691. PubMed ID: 32264369 [TBL] [Abstract][Full Text] [Related]
18. Transformation of hydrogel-based inverse opal photonic sensors from FCC to L1(1) during swelling. Lee YJ; Heitzman CE; Frei WR; Johnson HT; Braun PV J Phys Chem B; 2006 Oct; 110(39):19300-6. PubMed ID: 17004784 [TBL] [Abstract][Full Text] [Related]
20. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis. Park JH; Choi WS; Koo HY; Hong JC; Kim DY Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]