These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20974634)

  • 1. Phosphate binding sites identification in protein structures.
    Parca L; Gherardini PF; Helmer-Citterich M; Ausiello G
    Nucleic Acids Res; 2011 Mar; 39(4):1231-42. PubMed ID: 20974634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosfinder: a web server for the identification of phosphate-binding sites on protein structures.
    Parca L; Mangone I; Gherardini PF; Ausiello G; Helmer-Citterich M
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W278-82. PubMed ID: 21622655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities.
    Bianchi V; Gherardini PF; Helmer-Citterich M; Ausiello G
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S17. PubMed ID: 22536963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of nucleotide-binding sites in protein structures: a novel approach based on nucleotide modularity.
    Parca L; Gherardini PF; Truglio M; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G
    PLoS One; 2012; 7(11):e50240. PubMed ID: 23209685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of interaction sites from apo 3D structures when the holo conformation is different.
    Murga LF; Ondrechen MJ; Ringe D
    Proteins; 2008 Aug; 72(3):980-92. PubMed ID: 18300225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes.
    McGovern SL; Shoichet BK
    J Med Chem; 2003 Jul; 46(14):2895-907. PubMed ID: 12825931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pdbFun: mass selection and fast comparison of annotated PDB residues.
    Ausiello G; Zanzoni A; Peluso D; Via A; Helmer-Citterich M
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W133-7. PubMed ID: 15980442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme proteins--diversity in structural characteristics, function, and folding.
    Smith LJ; Kahraman A; Thornton JM
    Proteins; 2010 Aug; 78(10):2349-68. PubMed ID: 20544970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PocketAnnotate: towards site-based function annotation.
    Anand P; Yeturu K; Chandra N
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W400-8. PubMed ID: 22618878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AHoJ: rapid, tailored search and retrieval of apo and holo protein structures for user-defined ligands.
    Feidakis CP; Krivak R; Hoksza D; Novotny M
    Bioinformatics; 2022 Dec; 38(24):5452-5453. PubMed ID: 36282546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DynaBiS: A hierarchical sampling algorithm to identify flexible binding sites for large ligands and peptides.
    Melse O; Hecht S; Antes I
    Proteins; 2022 Jan; 90(1):18-32. PubMed ID: 34288078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Query3d: a new method for high-throughput analysis of functional residues in protein structures.
    Ausiello G; Via A; Helmer-Citterich M
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S5. PubMed ID: 16351754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate binding sites prediction in phosphorylation-dependent protein-protein interactions.
    Lu ZC; Jiang F; Wu YD
    Bioinformatics; 2021 Dec; 37(24):4712-4718. PubMed ID: 34270697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holo Protein Conformation Generation from Apo Structures by Ligand Binding Site Refinement.
    Zhang J; Li H; Zhao X; Wu Q; Huang SY
    J Chem Inf Model; 2022 Nov; 62(22):5806-5820. PubMed ID: 36342197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetaPocket: a meta approach to improve protein ligand binding site prediction.
    Huang B
    OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. webPDBinder: a server for the identification of ligand binding sites on protein structures.
    Bianchi V; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W308-13. PubMed ID: 23737450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characteristics of protein binding sites for calcium and lanthanide ions.
    Pidcock E; Moore GR
    J Biol Inorg Chem; 2001 Jun; 6(5-6):479-89. PubMed ID: 11472012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale comparison of four binding site detection algorithms.
    Schmidtke P; Souaille C; Estienne F; Baurin N; Kroemer RT
    J Chem Inf Model; 2010 Dec; 50(12):2191-200. PubMed ID: 20828173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.