These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20974934)

  • 1. Phospholipid bilayers are viscoelastic.
    Harland CW; Bradley MJ; Parthasarathy R
    Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19146-50. PubMed ID: 20974934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Main Phase Transition Temperature of Phospholipids by Oscillatory Rheology.
    Budai L; Budai M; Bozó T; Agócs G; Kellermayer M; Antal I
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical dynamometry to study phase transitions in lipid membranes.
    Dimova R; Pouligny B
    Methods Mol Biol; 2007; 400():227-36. PubMed ID: 17951737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear rheology of lipid monolayers and insights on membrane fluidity.
    Espinosa G; López-Montero I; Monroy F; Langevin D
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6008-13. PubMed ID: 21444777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instabilities and pattern miniaturization in confined and free elastic-viscous bilayers.
    Bandyopadhyay D; Sharma A; Shankar V
    J Chem Phys; 2008 Apr; 128(15):154909. PubMed ID: 18433279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase.
    Mason PC; Nagle JF; Epand RM; Katsaras J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):030902. PubMed ID: 11308623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of asymmetric behavior in supported lipid bilayers at the gel-fluid phase transition.
    Feng ZV; Spurlin TA; Gewirth AA
    Biophys J; 2005 Mar; 88(3):2154-64. PubMed ID: 15596519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles.
    Claessens MM; van Oort BF; Leermakers FA; Hoekstra FA; Cohen Stuart MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011903. PubMed ID: 17677490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the nature of lipid raft membranes.
    Niemelä PS; Ollila S; Hyvönen MT; Karttunen M; Vattulainen I
    PLoS Comput Biol; 2007 Feb; 3(2):e34. PubMed ID: 17319738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring lipid membrane viscosity using rotational and translational probe diffusion.
    Hormel TT; Kurihara SQ; Brennan MK; Wozniak MC; Parthasarathy R
    Phys Rev Lett; 2014 May; 112(18):188101. PubMed ID: 24856725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The study of the interaction of a model alpha-helical peptide with lipid bilayers and monolayers.
    Vitovic P; Kresák S; Naumann R; Schiller SM; Lewis RN; McElhaney RN; Hianik T
    Bioelectrochemistry; 2004 Jun; 63(1-2):169-76. PubMed ID: 15110268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids.
    Rawicz W; Smith BA; McIntosh TJ; Simon SA; Evans E
    Biophys J; 2008 Jun; 94(12):4725-36. PubMed ID: 18339739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers.
    Keller D; Larsen NB; Møller IM; Mouritsen OG
    Phys Rev Lett; 2005 Jan; 94(2):025701. PubMed ID: 15698195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for lipid/cholesterol ordering in model lipid membranes.
    Ege C; Ratajczak MK; Majewski J; Kjaer K; Lee KY
    Biophys J; 2006 Jul; 91(1):L01-3. PubMed ID: 16679372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-growth kinetic origin of nonhorizontal phase coexistence plateaux in langmuir monolayers: compression rigidity of a Raft-like lipid distribution.
    Arriaga LR; López-Montero I; Ignés-Mullol J; Monroy F
    J Phys Chem B; 2010 Apr; 114(13):4509-20. PubMed ID: 20235509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rough-smooth-rough dynamic interface growth in supported lipid bilayers.
    Verma P; Mager MD; Melosh NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012404. PubMed ID: 24580234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microrheology of biopolymer-membrane complexes.
    Helfer E; Harlepp S; Bourdieu L; Robert J; MacKintosh FC; Chatenay D
    Phys Rev Lett; 2000 Jul; 85(2):457-60. PubMed ID: 10991307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes [corrected].
    Rahimi M; Arroyo M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011932. PubMed ID: 23005476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic shear dissipation and transmission in lipid bilayers.
    Amador GJ; van Dijk D; Kieffer R; Aubin-Tam ME; Tam D
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34021088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior.
    Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G
    Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.