These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20974972)
1. Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Hickman MA; Rusche LN Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19384-9. PubMed ID: 20974972 [TBL] [Abstract][Full Text] [Related]
2. The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization. Hanner AS; Rusche LN Genetics; 2017 Oct; 207(2):517-528. PubMed ID: 28827288 [TBL] [Abstract][Full Text] [Related]
3. The DNA replication protein Orc1 from the yeast Torulaspora delbrueckii is required for heterochromatin formation but not as a silencer-binding protein. Maria H; Rusche LN Genetics; 2022 Aug; 222(1):. PubMed ID: 35894940 [TBL] [Abstract][Full Text] [Related]
4. Structure and function of the Orc1 BAH-nucleosome complex. De Ioannes P; Leon VA; Kuang Z; Wang M; Boeke JD; Hochwagen A; Armache KJ Nat Commun; 2019 Jul; 10(1):2894. PubMed ID: 31263106 [TBL] [Abstract][Full Text] [Related]
5. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547 [TBL] [Abstract][Full Text] [Related]
6. Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Gallagher JE; Babiarz JE; Teytelman L; Wolfe KH; Rine J Genetics; 2009 Apr; 181(4):1477-91. PubMed ID: 19171939 [TBL] [Abstract][Full Text] [Related]
7. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Connelly JJ; Yuan P; Hsu HC; Li Z; Xu RM; Sternglanz R Mol Cell Biol; 2006 Apr; 26(8):3256-65. PubMed ID: 16581798 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution of heterochromatin-dependent transcriptional gene silencing. Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027 [TBL] [Abstract][Full Text] [Related]
9. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Hoppe GJ; Tanny JC; Rudner AD; Gerber SA; Danaie S; Gygi SP; Moazed D Mol Cell Biol; 2002 Jun; 22(12):4167-80. PubMed ID: 12024030 [TBL] [Abstract][Full Text] [Related]
10. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin. Rudner AD; Hall BE; Ellenberger T; Moazed D Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. Ehrentraut S; Hassler M; Oppikofer M; Kueng S; Weber JM; Mueller JW; Gasser SM; Ladurner AG; Ehrenhofer-Murray AE Genes Dev; 2011 Sep; 25(17):1835-46. PubMed ID: 21896656 [TBL] [Abstract][Full Text] [Related]
12. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in Samel A; Rudner A; Ehrenhofer-Murray AE G3 (Bethesda); 2017 Apr; 7(4):1117-1126. PubMed ID: 28188183 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Armache KJ; Garlick JD; Canzio D; Narlikar GJ; Kingston RE Science; 2011 Nov; 334(6058):977-82. PubMed ID: 22096199 [TBL] [Abstract][Full Text] [Related]
14. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Hickman MA; Froyd CA; Rusche LN Eukaryot Cell; 2011 Sep; 10(9):1183-92. PubMed ID: 21764908 [TBL] [Abstract][Full Text] [Related]
15. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Onishi M; Liou GG; Buchberger JR; Walz T; Moazed D Mol Cell; 2007 Dec; 28(6):1015-28. PubMed ID: 18158899 [TBL] [Abstract][Full Text] [Related]
16. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. van Welsem T; Frederiks F; Verzijlbergen KF; Faber AW; Nelson ZW; Egan DA; Gottschling DE; van Leeuwen F Mol Cell Biol; 2008 Jun; 28(11):3861-72. PubMed ID: 18391024 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin. Wang SH; Lee SP; Tung SY; Tsai SP; Tsai HC; Shen HH; Hong JY; Su KC; Chen FJ; Liu BH; Wu YY; Hsiao SP; Tsai MS; Liou GG Arch Biochem Biophys; 2019 Aug; 671():167-174. PubMed ID: 31295433 [TBL] [Abstract][Full Text] [Related]
18. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly. Zukowski A; Al-Afaleq NO; Duncan ED; Yao T; Johnson AM J Biol Chem; 2018 Feb; 293(7):2498-2509. PubMed ID: 29288197 [TBL] [Abstract][Full Text] [Related]
19. Measuring the buffering capacity of gene silencing in Wu K; Dhillon N; Du K; Kamakaka RT Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34857629 [TBL] [Abstract][Full Text] [Related]
20. A model for step-wise assembly of heterochromatin in yeast. Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]