These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20975199)
1. Interactive separating streak surfaces. Ferstl F; Bürger K; Theisel H; Westermann R IEEE Trans Vis Comput Graph; 2010; 16(6):1569-77. PubMed ID: 20975199 [TBL] [Abstract][Full Text] [Related]
2. A time-dependent vector field topology based on streak surfaces. Uffinger M; Sadlo F; Ertl T IEEE Trans Vis Comput Graph; 2013 Mar; 19(3):379-92. PubMed ID: 22614331 [TBL] [Abstract][Full Text] [Related]
3. Interactive streak surface visualization on the GPU. Bürger K; Ferstl F; Theisel H; Westermann R IEEE Trans Vis Comput Graph; 2009; 15(6):1259-66. PubMed ID: 19834197 [TBL] [Abstract][Full Text] [Related]
4. Time and streak surfaces for flow visualization in large time-varying data sets. Krishnan H; Garth C; Joy KI IEEE Trans Vis Comput Graph; 2009; 15(6):1267-74. PubMed ID: 19834198 [TBL] [Abstract][Full Text] [Related]
5. Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. Sadlo F; Peikert R IEEE Trans Vis Comput Graph; 2007; 13(6):1456-63. PubMed ID: 17968097 [TBL] [Abstract][Full Text] [Related]
6. Efficient computation and visualization of coherent structures in fluid flow applications. Garth C; Gerhardt F; Tricoche X; Hans H IEEE Trans Vis Comput Graph; 2007; 13(6):1464-71. PubMed ID: 17968098 [TBL] [Abstract][Full Text] [Related]
7. Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport. Tang W; Chan PW; Haller G Chaos; 2010 Mar; 20(1):017502. PubMed ID: 20370292 [TBL] [Abstract][Full Text] [Related]
8. Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Brunton SL; Rowley CW Chaos; 2010 Mar; 20(1):017503. PubMed ID: 20370293 [TBL] [Abstract][Full Text] [Related]
9. Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows. Guo H; He W; Peterka T; Shen HW; Collis S; Helmus J IEEE Trans Vis Comput Graph; 2016 Jun; 22(6):1672-1682. PubMed ID: 26955037 [TBL] [Abstract][Full Text] [Related]
10. Texture-based visualization of unsteady 3D flow by real-time advection and volumetric illumination. Weiskopf D; Schafhitzel T; Ertl T IEEE Trans Vis Comput Graph; 2007; 13(3):569-82. PubMed ID: 17356222 [TBL] [Abstract][Full Text] [Related]
11. Smoke surfaces: an interactive flow visualization technique inspired by real-world flow experiments. von Funck W; Weinkauf T; Theisel H; Seidel HP IEEE Trans Vis Comput Graph; 2008; 14(6):1396-403. PubMed ID: 18988989 [TBL] [Abstract][Full Text] [Related]
13. Interactive computation and rendering of Finite-time Lyapunov Exponent fields. Barakat S; Garth C; Tricoche X IEEE Trans Vis Comput Graph; 2012 Aug; 18(8):1368-80. PubMed ID: 22291157 [TBL] [Abstract][Full Text] [Related]
14. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows. Finn J; Apte SV Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982 [TBL] [Abstract][Full Text] [Related]
15. High-quality and interactive animations of 3D time-varying vector fields. Helgeland A; Elboth T IEEE Trans Vis Comput Graph; 2006; 12(6):1535-46. PubMed ID: 17073375 [TBL] [Abstract][Full Text] [Related]
16. A particle system for interactive visualization of 3D flows. Krüger J; Kipfer P; Kondratieva P; Westermann R IEEE Trans Vis Comput Graph; 2005; 11(6):744-56. PubMed ID: 16270866 [TBL] [Abstract][Full Text] [Related]
17. Backward Finite-Time Lyapunov Exponents in Inertial Flows. Gunther T; Theisel H IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):970-979. PubMed ID: 27875210 [TBL] [Abstract][Full Text] [Related]