These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20975673)

  • 1. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble.
    Usmani I; Afzelius M; de Riedmatten H; Gisin N
    Nat Commun; 2010 Apr; 1():12. PubMed ID: 20975673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
    Gündoğan M; Ledingham PM; Kutluer K; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2015 Jun; 114(23):230501. PubMed ID: 26196784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.
    Zhong T; Kindem JM; Miyazono E; Faraon A
    Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solid-state light-matter interface at the single-photon level.
    de Riedmatten H; Afzelius M; Staudt MU; Simon C; Gisin N
    Nature; 2008 Dec; 456(7223):773-7. PubMed ID: 19079056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic quantum state transfer between a cold atomic gas and a crystal.
    Maring N; Farrera P; Kutluer K; Mazzera M; Heinze G; de Riedmatten H
    Nature; 2017 Nov; 551(7681):485-488. PubMed ID: 29168806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum storage of a photonic polarization qubit in a solid.
    Gündoğan M; Ledingham PM; Almasi A; Cristiani M; de Riedmatten H
    Phys Rev Lett; 2012 May; 108(19):190504. PubMed ID: 23003015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles.
    Zhong T; Kindem JM; Rochman J; Faraon A
    Nat Commun; 2017 Jan; 8():14107. PubMed ID: 28090078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of atomic frequency comb memory for light with spin-wave storage.
    Afzelius M; Usmani I; Amari A; Lauritzen B; Walther A; Simon C; Sangouard N; Minár J; de Riedmatten H; Gisin N; Kröll S
    Phys Rev Lett; 2010 Jan; 104(4):040503. PubMed ID: 20366694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.
    Jin J; Saglamyurek E; Puigibert Ml; Verma V; Marsili F; Nam SW; Oblak D; Tittel W
    Phys Rev Lett; 2015 Oct; 115(14):140501. PubMed ID: 26551798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.
    Vernaz-Gris P; Huang K; Cao M; Sheremet AS; Laurat J
    Nat Commun; 2018 Jan; 9(1):363. PubMed ID: 29371593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation.
    Farrera P; Heinze G; de Riedmatten H
    Phys Rev Lett; 2018 Mar; 120(10):100501. PubMed ID: 29570345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide.
    Liu C; Zhu TX; Su MX; Ma YZ; Zhou ZQ; Li CF; Guo GC
    Phys Rev Lett; 2020 Dec; 125(26):260504. PubMed ID: 33449731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control.
    Sinclair N; Saglamyurek E; Mallahzadeh H; Slater JA; George M; Ricken R; Hedges MP; Oblak D; Simon C; Sohler W; Tittel W
    Phys Rev Lett; 2014 Aug; 113(5):053603. PubMed ID: 25126920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
    Albrecht B; Farrera P; Fernandez-Gonzalvo X; Cristiani M; de Riedmatten H
    Nat Commun; 2014 Feb; 5():3376. PubMed ID: 24572696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of optical photons for quantum information processing.
    Makino K; Hashimoto Y; Yoshikawa J; Ohdan H; Toyama T; van Loock P; Furusawa A
    Sci Adv; 2016 May; 2(5):e1501772. PubMed ID: 27386536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.
    Yu L; Natarajan CM; Horikiri T; Langrock C; Pelc JS; Tanner MG; Abe E; Maier S; Schneider C; Höfling S; Kamp M; Hadfield RH; Fejer MM; Yamamoto Y
    Nat Commun; 2015 Nov; 6():8955. PubMed ID: 26597223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient quantum memory for photonic polarization qubits generated by cavity-enhanced spontaneous parametric downconversion.
    Tseng YC; Wei YC; Chen YC
    Opt Express; 2022 May; 30(11):19944-19960. PubMed ID: 36221757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time Entanglement between a Photon and a Spin Wave in a Multimode Solid-State Quantum Memory.
    Kutluer K; Distante E; Casabone B; Duranti S; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2019 Jul; 123(3):030501. PubMed ID: 31386433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of reliable solid-state quantum memory for photonic polarization qubit.
    Zhou ZQ; Lin WB; Yang M; Li CF; Guo GC
    Phys Rev Lett; 2012 May; 108(19):190505. PubMed ID: 23003016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.