These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20975708)

  • 1. Motion-based DNA detection using catalytic nanomotors.
    Wu J; Balasubramanian S; Kagan D; Manesh KM; Campuzano S; Wang J
    Nat Commun; 2010 Jul; 1():36. PubMed ID: 20975708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion-driven sensing and biosensing using electrochemically propelled nanomotors.
    Campuzano S; Kagan D; Orozco J; Wang J
    Analyst; 2011 Nov; 136(22):4621-30. PubMed ID: 21915400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors.
    Yuan Q; Zhang Y; Chen Y; Wang R; Du C; Yasun E; Tan W
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9331-6. PubMed ID: 21596999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Chemical Communication between Synthetic Nanomotors.
    Chen C; Chang X; Teymourian H; Ramírez-Herrera DE; Esteban-Fernández de Ávila B; Lu X; Li J; He S; Fang C; Liang Y; Mou F; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):241-245. PubMed ID: 29143413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver.
    Kagan D; Calvo-Marzal P; Balasubramanian S; Sattayasamitsathit S; Manesh KM; Flechsig GU; Wang J
    J Am Chem Soc; 2009 Sep; 131(34):12082-3. PubMed ID: 19670862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved autonomous DNA nanomotor.
    Bishop JD; Klavins E
    Nano Lett; 2007 Sep; 7(9):2574-7. PubMed ID: 17655267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion control at the nanoscale.
    Wang J; Manesh KM
    Small; 2010 Feb; 6(3):338-45. PubMed ID: 20013944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of HL-60 cancer cells from the human serum sample using MnO
    Amouzadeh Tabrizi M; Shamsipur M; Saber R; Sarkar S
    Biosens Bioelectron; 2018 Jul; 110():141-146. PubMed ID: 29609160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of DNA detection methods using nanoparticles and silver enhancement.
    Foultier B; Moreno-Hagelsieb L; Flandre D; Remacle J
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):3-12. PubMed ID: 16441154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.
    Zhou Z; Li T; Huang H; Chen Y; Liu F; Huang C; Li N
    Chem Commun (Camb); 2014 Nov; 50(87):13373-6. PubMed ID: 25233044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy.
    Choi H; Lee GH; Kim KS; Hahn SK
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2338-2346. PubMed ID: 29280612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterial-based amplified transduction of biomolecular interactions.
    Wang J
    Small; 2005 Nov; 1(11):1036-43. PubMed ID: 17193390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA.
    Su S; Wu Y; Zhu D; Chao J; Liu X; Wan Y; Su Y; Zuo X; Fan C; Wang L
    Small; 2016 Jul; 12(28):3794-801. PubMed ID: 27305644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic properties of silver nanostructures coated with an amorphous silicon-carbon alloy and their applications for sensitive sensing of DNA hybridization.
    Touahir L; Galopin E; Boukherroub R; Gouget-Laemmel AC; Chazalviel JN; Ozanam F; Saison O; Akjouj A; Pennec Y; Djafari-Rouhani B; Szunerits S
    Analyst; 2011 May; 136(9):1859-66. PubMed ID: 21437320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-propelled affinity biosensors: Moving the receptor around the sample.
    Wang J
    Biosens Bioelectron; 2016 Feb; 76():234-42. PubMed ID: 26074332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing.
    Yuan K; Bujalance-Fernández J; Jurado-Sánchez B; Escarpa A
    Mikrochim Acta; 2020 Sep; 187(10):581. PubMed ID: 32979095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy.
    Bui MP; Baek TJ; Seong GH
    Anal Bioanal Chem; 2007 Jul; 388(5-6):1185-90. PubMed ID: 17534606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can man-made nanomachines compete with nature biomotors?
    Wang J
    ACS Nano; 2009 Jan; 3(1):4-9. PubMed ID: 19206241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplified transduction of biomolecular interactions based on the use of nanomaterials.
    Wang J
    Adv Biochem Eng Biotechnol; 2008; 109():239-54. PubMed ID: 17987277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable and reproducible construction of a SERS substrate and its sensing applications.
    Wen Y; Wang W; Zhang Z; Xu L; Du H; Zhang X; Song Y
    Nanoscale; 2013 Jan; 5(2):523-6. PubMed ID: 23223828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.