BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 20975737)

  • 1. Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks.
    Roukos DH
    Pharmacogenomics J; 2011 Apr; 11(2):81-92. PubMed ID: 20975737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care.
    Roukos DH
    Expert Rev Mol Diagn; 2010 Jan; 10(1):33-48. PubMed ID: 20014921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multigene assays and isolated tumor cells for early breast cancer treatment: time for bionetworks.
    Roukos DH; Ziogas DE; Katsios C
    Expert Rev Anticancer Ther; 2010 Aug; 10(8):1187-95. PubMed ID: 20735306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting fatty acid synthase-driven lipid rafts: a novel strategy to overcome trastuzumab resistance in breast cancer cells.
    Menendez JA; Vellon L; Lupu R
    Med Hypotheses; 2005; 64(5):997-1001. PubMed ID: 15780499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequencing and network modeling to overcome trastuzumab resistance.
    Roukos DH
    Pharmacogenomics; 2010 Aug; 11(8):1039-43. PubMed ID: 20704462
    [No Abstract]   [Full Text] [Related]  

  • 8. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells.
    Vazquez-Martin A; Colomer R; Brunet J; Menendez JA
    Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome network medicine: innovation to overcome huge challenges in cancer therapy.
    Roukos DH
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(2):201-8. PubMed ID: 24318985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells.
    Fessler SP; Wotkowicz MT; Mahanta SK; Bamdad C
    Breast Cancer Res Treat; 2009 Nov; 118(1):113-24. PubMed ID: 19415485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular diagnostics and personalized medicine in oncology: challenges and opportunities.
    Normanno N; Rachiglio AM; Roma C; Fenizia F; Esposito C; Pasquale R; La Porta ML; Iannaccone A; Micheli F; Santangelo M; Bergantino F; Costantini S; De Luca A
    J Cell Biochem; 2013 Mar; 114(3):514-24. PubMed ID: 22991232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed in primary breast cancers.
    Hamel S; Bouchard A; Ferrario C; Hassan S; Aguilar-Mahecha A; Buchanan M; Quenneville L; Miller W; Basik M
    Breast Cancer Res Treat; 2010 Feb; 120(1):47-57. PubMed ID: 19301121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
    Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS
    Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the goal of personalized medicine in gastric cancer--time to move beyond HER2 inhibition. Part II: Targeting gene mutations and gene amplifications and the angiogenesis pathway.
    Lee J; Ou SH
    Discov Med; 2013 Aug; 16(86):7-14. PubMed ID: 23911227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer.
    Spector NL; Blackwell KL
    J Clin Oncol; 2009 Dec; 27(34):5838-47. PubMed ID: 19884552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in molecular genetics of breast cancer.
    Pavelić K; Gall-Troselj K
    J Mol Med (Berl); 2001 Oct; 79(10):566-73. PubMed ID: 11692153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer omics: from regulatory networks to clinical outcomes.
    Tang B; Hsu PY; Huang TH; Jin VX
    Cancer Lett; 2013 Nov; 340(2):277-83. PubMed ID: 23201140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology.
    Cronin M; Ross JS
    Biomark Med; 2011 Jun; 5(3):293-305. PubMed ID: 21657839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense clusterin oligodeoxynucleotides increase the response of HER-2 gene amplified breast cancer cells to Trastuzumab.
    Biroccio A; D'Angelo C; Jansen B; Gleave ME; Zupi G
    J Cell Physiol; 2005 Aug; 204(2):463-9. PubMed ID: 15685647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.