These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2097584)

  • 1. Parvalbumin immunoreactivity in the central auditory system of the gerbil: a developmental study.
    Seto-Ohshima A; Aoki E; Semba R; Emson PC; Heizmann CW
    Neurosci Lett; 1990 Oct; 119(1):60-3. PubMed ID: 2097584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of central nervous system auditory and visual nuclei in the postnatal gerbil (Meriones unguiculatus).
    Rübsamen R; Gutowski M; Langkau J; Dörrscheidt GJ
    J Comp Neurol; 1994 Aug; 346(2):289-305. PubMed ID: 7962720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential morphology of the superior olivary complex of Meriones unguiculatus and Monodelphis domestica revealed by calcium-binding proteins.
    Bazwinsky-Wutschke I; Härtig W; Kretzschmar R; Rübsamen R
    Brain Struct Funct; 2016 Dec; 221(9):4505-4523. PubMed ID: 26792006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of brain-derived neurotrophic factor and neurotrophin-3 immunoreactivity in the lower auditory brainstem of the postnatal gerbil.
    Tierney TS; P Doubell T; Xia G; Moore DR
    Eur J Neurosci; 2001 Sep; 14(5):785-93. PubMed ID: 11576182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of parvalbumin-, calbindin- and adult GABA-immunoreactivity in two visual nuclei of zebra finches.
    Braun K; Scheich H; Zuschratter W; Heizmann CW; Matute C; Streit P
    Brain Res; 1988 Dec; 475(2):205-17. PubMed ID: 3214731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    J Comp Neurol; 1982 Jun; 207(4):369-80. PubMed ID: 7119149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats.
    Lohmann C; Friauf E
    J Comp Neurol; 1996 Mar; 367(1):90-109. PubMed ID: 8867285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional ontogeny in the central auditory pathway of the Mongolian gerbil. A 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    Exp Brain Res; 1982; 47(3):428-36. PubMed ID: 7128710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential calbindin-like immunoreactivity in the brain stem auditory system of the chinchilla.
    Kelley PE; Frisina RD; Zettel ML; Walton JP
    J Comp Neurol; 1992 Jun; 320(2):196-212. PubMed ID: 1619049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli.
    Zettel ML; Carr CE; O'Neill WE
    J Comp Neurol; 1991 Nov; 313(1):1-16. PubMed ID: 1761747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus.
    Nordeen KW; Killackey HP; Kitzes LM
    J Comp Neurol; 1983 Feb; 214(2):131-43. PubMed ID: 6841681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of GABA immunoreactivity in the auditory brainstem of guinea pigs.
    Thompson GC; Cortez AM; Lam DM
    Brain Res; 1985 Jul; 339(1):119-22. PubMed ID: 3896399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling.
    Bazwinsky I; Härtig W; Rübsamen R
    J Chem Neuroanat; 2008 Jan; 35(1):158-74. PubMed ID: 18065198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentobarbital and ketamine alter the pattern of 2-deoxyglucose uptake in the central auditory system of the gerbil.
    Wang ZX; Ryan AF; Woolf NK
    Hear Res; 1987; 27(2):145-55. PubMed ID: 3610843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The perforant path in the seizure sensitive gerbil contains the Ca(2+)-binding protein parvalbumin.
    Scotti AL; Nitsch C
    Exp Brain Res; 1991; 85(1):137-43. PubMed ID: 1884754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil.
    Roberts RC; Ribak CE
    J Comp Neurol; 1987 Apr; 258(2):267-80. PubMed ID: 3584540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appearance of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain.
    Seto-Ohshima A; Aoki E; Semba R; Emson PC; Heizmann CW
    Histochemistry; 1990; 94(6):579-89. PubMed ID: 2279955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central auditory pathway of the gerbil Psammomys obesus: a deoxyglucose study.
    Melzer P
    Hear Res; 1984 Aug; 15(2):187-95. PubMed ID: 6490545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of perikaryal parvalbumin immunoreactivity from surviving GABAergic neurons in the CA1 field of epileptic gerbils.
    Scotti AL; Bollag O; Kalt G; Nitsch C
    Hippocampus; 1997; 7(5):524-35. PubMed ID: 9347349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in parvalbumin and calbindin chemospecificity in the centers of the turtle ascending auditory pathway revealed by double immunofluorescence labeling.
    Chudinova TV; Belekhova MG; Tostivint H; Ward R; Rio JP; Kenigfest NB
    Brain Res; 2012 Sep; 1473():87-103. PubMed ID: 22820305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.