BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20975899)

  • 1. Genomic adaptation of prokaryotic organisms at high temperature.
    Basak S; Mukhopadhyay P; Gupta SK; Ghosh TC
    Bioinformation; 2010 Feb; 4(8):352-6. PubMed ID: 20975899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of genomic adaptation at high temperature for prokaryotic organisms.
    Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2005 May; 330(3):629-32. PubMed ID: 15809043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species.
    Zheng H; Wu H
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S7. PubMed ID: 21172057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance.
    Omelchenko MV; Wolf YI; Gaidamakova EK; Matrosova VY; Vasilenko A; Zhai M; Daly MJ; Koonin EV; Makarova KS
    BMC Evol Biol; 2005 Oct; 5():57. PubMed ID: 16242020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus.
    McDonald JH
    Mol Biol Evol; 2001 May; 18(5):741-9. PubMed ID: 11319258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A positive correlation between GC content and growth temperature in prokaryotes.
    Hu EZ; Lan XR; Liu ZL; Gao J; Niu DK
    BMC Genomics; 2022 Feb; 23(1):110. PubMed ID: 35139824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Signature Difference between Deinococcus radiodurans and Thermus thermophilus.
    Nishida H; Abe R; Nagayama T; Yano K
    Int J Evol Biol; 2012; 2012():205274. PubMed ID: 22500246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes.
    Galtier N; Lobry JR
    J Mol Evol; 1997 Jun; 44(6):632-6. PubMed ID: 9169555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the codon first letter in the relationship between genomic GC content and protein amino acid composition.
    Wilquet V; Van de Casteele M
    Res Microbiol; 1999; 150(1):21-32. PubMed ID: 10096131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base compositions of genes encoding alpha-actin and lactate dehydrogenase-A from differently adapted vertebrates show no temperature-adaptive variation in G + C content.
    Ream RA; Johns GC; Somero GN
    Mol Biol Evol; 2003 Jan; 20(1):105-10. PubMed ID: 12519912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene cloning and protein expression of γ-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: comparison of molecular and structural properties with mesophilic counterparts.
    Castellano I; Di Salle A; Merlino A; Rossi M; La Cara F
    Extremophiles; 2011 Mar; 15(2):259-70. PubMed ID: 21298394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosomal protein S8 from Thermus thermophilus VK1. Sequencing of the gene, overexpression of the protein in Escherichia coli and interaction with rRNA.
    Vysotskaya V; Tischenko S; Garber M; Kern D; Mougel M; Ehresmann C; Ehresmann B
    Eur J Biochem; 1994 Jul; 223(2):437-45. PubMed ID: 7519982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses.
    Papageorgiou AC; Adam PS; Stavros P; Nounesis G; Meijers R; Petratos K; Vorgias CE
    Extremophiles; 2016 Sep; 20(5):695-709. PubMed ID: 27342116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability.
    Borges B; Gallo G; Coelho C; Negri N; Maiello F; Hardy L; Würtele M
    Biochim Biophys Acta Gen Subj; 2021 Jul; 1865(7):129895. PubMed ID: 33781823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correspondence analysis of amino acid usage within the family Bacillaceae.
    Naya H; Zavala A; Romero H; Rodríguez-Maseda H; Musto H
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1252-7. PubMed ID: 15555561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability.
    Maiello F; Gallo G; Coelho C; Sucharski F; Hardy L; Würtele M
    PLoS One; 2020; 15(5):e0232959. PubMed ID: 32401802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of the L-lactate dehydrogenase-encoding gene of Deinococcus radiodurans, a suitable mesophilic counterpart for Thermus.
    Narumi I; Watanabe H
    Gene; 1996 Jun; 172(1):117-9. PubMed ID: 8654970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on tertiary contacts and folding of RNase P RNAs from a psychrophilic, a mesophilic/radiation-resistant, and a thermophilic bacterium.
    Marszalkowski M; Werner A; Feltens R; Helmecke D; Gößringer M; Westhof E; Hartmann RK
    RNA; 2021 Oct; 27(10):1204-1219. PubMed ID: 34266994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.