These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20976110)

  • 1. Inferring PDZ domain multi-mutant binding preferences from single-mutant data.
    Zaslavsky E; Bradley P; Yanover C
    PLoS One; 2010 Sep; 5(9):e12787. PubMed ID: 20976110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
    Smith CA; Kortemme T
    J Mol Biol; 2010 Sep; 402(2):460-74. PubMed ID: 20654621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions.
    Crivelli JJ; Lemmon G; Kaufmann KW; Meiler J
    J Comput Aided Mol Des; 2013 Dec; 27(12):1051-65. PubMed ID: 24305904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain-peptide interaction from primary sequence.
    Shao X; Tan CS; Voss C; Li SS; Deng N; Bader GD
    Bioinformatics; 2011 Feb; 27(3):383-90. PubMed ID: 21127034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster based prediction of PDZ-peptide interactions.
    Kundu K; Backofen R
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S5. PubMed ID: 24564547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome scanning to predict PDZ domain interactions using support vector machines.
    Hui S; Bader GD
    BMC Bioinformatics; 2010 Oct; 11():507. PubMed ID: 20939902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of the C-terminal ligand specificity of the erbin PDZ domain by allosteric mutational effects.
    Murciano-Calles J; McLaughlin ME; Erijman A; Hooda Y; Chakravorty N; Martinez JC; Shifman JM; Sidhu SS
    J Mol Biol; 2014 Oct; 426(21):3500-8. PubMed ID: 24813123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putting into practice domain-linear motif interaction predictions for exploration of protein networks.
    Luck K; Fournane S; Kieffer B; Masson M; Nominé Y; Travé G
    PLoS One; 2011; 6(11):e25376. PubMed ID: 22069443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of wavelet transform for PDZ domain classification.
    Daqrouq K; Alhmouz R; Balamesh A; Memic A
    PLoS One; 2015; 10(4):e0122873. PubMed ID: 25860375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning based method for the prediction of G protein-coupled receptor-binding PDZ domain proteins.
    Eo HS; Kim S; Koo H; Kim W
    Mol Cells; 2009 Jun; 27(6):629-34. PubMed ID: 19533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and thermodynamic analysis of PDZ-ligand interactions.
    Shepherd TR; Fuentes EJ
    Methods Enzymol; 2011; 488():81-100. PubMed ID: 21195225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct ligand specificity of the Tiam1 and Tiam2 PDZ domains.
    Shepherd TR; Hard RL; Murray AM; Pei D; Fuentes EJ
    Biochemistry; 2011 Mar; 50(8):1296-308. PubMed ID: 21192692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of all evolutionary paths between two divergent PDZ domain specificities.
    Teyra J; Ernst A; Singer A; Sicheri F; Sidhu SS
    Protein Sci; 2020 Feb; 29(2):433-442. PubMed ID: 31654425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural flexibility of the shank1 PDZ domain is important for its binding to different ligands.
    Lee JH; Park H; Park SJ; Kim HJ; Eom SH
    Biochem Biophys Res Commun; 2011 Apr; 407(1):207-12. PubMed ID: 21376703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence-based computational approach to predicting PDZ domain-peptide interactions.
    Nakariyakul S; Liu ZP; Chen L
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):165-70. PubMed ID: 23608946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural portrait of the PDZ domain family.
    Ernst A; Appleton BA; Ivarsson Y; Zhang Y; Gfeller D; Wiesmann C; Sidhu SS
    J Mol Biol; 2014 Oct; 426(21):3509-19. PubMed ID: 25158098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specificity map for the PDZ domain family.
    Tonikian R; Zhang Y; Sazinsky SL; Currell B; Yeh JH; Reva B; Held HA; Appleton BA; Evangelista M; Wu Y; Xin X; Chan AC; Seshagiri S; Lasky LA; Sander C; Boone C; Bader GD; Sidhu SS
    PLoS Biol; 2008 Sep; 6(9):e239. PubMed ID: 18828675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage display can select over-hydrophobic sequences that may impair prediction of natural domain-peptide interactions.
    Luck K; Travé G
    Bioinformatics; 2011 Apr; 27(7):899-902. PubMed ID: 21300698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of PDZ Interactions by Proteomic Peptide Phage Display.
    Lüchow S; Sundell GN; Ivarsson Y
    Methods Mol Biol; 2021; 2256():41-60. PubMed ID: 34014515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.