These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20976244)

  • 1. Evolution of a signaling nexus constrained by protein interfaces and conformational States.
    Temple BR; Jones CD; Jones AM
    PLoS Comput Biol; 2010 Oct; 6(10):e1000962. PubMed ID: 20976244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system.
    Anantharaman V; Abhiman S; de Souza RF; Aravind L
    Gene; 2011 Apr; 475(2):63-78. PubMed ID: 21182906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GprotPRED: Annotation of Gα, Gβ and Gγ subunits of G-proteins using profile Hidden Markov Models (pHMMs) and application to proteomes.
    Kostiou VD; Theodoropoulou MC; Hamodrakas SJ
    Biochim Biophys Acta; 2016 May; 1864(5):435-40. PubMed ID: 26854601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair.
    Neuwald AF
    Protein Sci; 2007 Nov; 16(11):2570-7. PubMed ID: 17962409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa.
    Lokits AD; Indrischek H; Meiler J; Hamm HE; Stadler PF
    BMC Evol Biol; 2018 Apr; 18(1):51. PubMed ID: 29642851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recently duplicated plant heterotrimeric Gα proteins with subtle biochemical differences influence specific outcomes of signal-response coupling.
    Roy Choudhury S; Pandey S
    J Biol Chem; 2017 Sep; 292(39):16188-16198. PubMed ID: 28827312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G protein activation without a GEF in the plant kingdom.
    Urano D; Jones JC; Wang H; Matthews M; Bradford W; Bennetzen JL; Jones AM
    PLoS Genet; 2012 Jun; 8(6):e1002756. PubMed ID: 22761582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2).
    Kimple AJ; Soundararajan M; Hutsell SQ; Roos AK; Urban DJ; Setola V; Temple BR; Roth BL; Knapp S; Willard FS; Siderovski DP
    J Biol Chem; 2009 Jul; 284(29):19402-11. PubMed ID: 19478087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
    Siderovski DP; Willard FS
    Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein-protein interfaces on G-protein beta subunits reveals a novel phospholipase C beta2 binding domain.
    Friedman EJ; Temple BR; Hicks SN; Sondek J; Jones CD; Jones AM
    J Mol Biol; 2009 Oct; 392(4):1044-54. PubMed ID: 19646992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials.
    Baltoumas FA; Theodoropoulou MC; Hamodrakas SJ
    J Struct Biol; 2013 Jun; 182(3):209-18. PubMed ID: 23523730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A P-loop mutation in Gα subunits prevents transition to the active state: implications for G-protein signaling in fungal pathogenesis.
    Bosch DE; Willard FS; Ramanujam R; Kimple AJ; Willard MD; Naqvi NI; Siderovski DP
    PLoS Pathog; 2012 Feb; 8(2):e1002553. PubMed ID: 22383884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive evolution of signaling partners.
    Urano D; Dong T; Bennetzen JL; Jones AM
    Mol Biol Evol; 2015 Apr; 32(4):998-1007. PubMed ID: 25568345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring allosteric coupling in the alpha-subunit of heterotrimeric G proteins using evolutionary and ensemble-based approaches.
    Sayar K; Uğur O; Liu T; Hilser VJ; Onaran O
    BMC Struct Biol; 2008 May; 8():23. PubMed ID: 18454845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of dominant negative G-protein alpha subunits.
    Barren B; Artemyev NO
    J Neurosci Res; 2007 Dec; 85(16):3505-14. PubMed ID: 17639598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.
    Huang J; Sun Y; Zhang JJ; Huang XY
    J Biol Chem; 2015 Jan; 290(1):272-83. PubMed ID: 25414258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans.
    Wang Y; Shen G; Gong J; Shen D; Whittington A; Qing J; Treloar J; Boisvert S; Zhang Z; Yang C; Wang P
    J Biol Chem; 2014 May; 289(18):12202-16. PubMed ID: 24659785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins.
    Sprang SR; Chen Z; Du X
    Adv Protein Chem; 2007; 74():1-65. PubMed ID: 17854654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors.
    Zhao J; Wang X
    J Biol Chem; 2004 Jan; 279(3):1794-800. PubMed ID: 14594812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis.
    Sprang SR
    Biopolymers; 2016 Aug; 105(8):449-62. PubMed ID: 26996924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.