These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 20976245)

  • 1. Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila.
    Bright LJ; Kambesis N; Nelson SB; Jeong B; Turkewitz AP
    PLoS Genet; 2010 Oct; 6(10):e1001155. PubMed ID: 20976245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia.
    Saito-Nakano Y; Nakahara T; Nakano K; Nozaki T; Numata O
    J Eukaryot Microbiol; 2010; 57(5):389-99. PubMed ID: 20738463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis.
    Klöpper TH; Kienle N; Fasshauer D; Munro S
    BMC Biol; 2012 Aug; 10():71. PubMed ID: 22873208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab family of small GTPases: an updated view on their regulation and functions.
    Homma Y; Hiragi S; Fukuda M
    FEBS J; 2021 Jan; 288(1):36-55. PubMed ID: 32542850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic.
    Fukuda M
    Histol Histopathol; 2010 Nov; 25(11):1473-80. PubMed ID: 20865669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolutionary landscape of the Rab family in chordates.
    Coppola U; Ristoratore F; Albalat R; D'Aniello S
    Cell Mol Life Sci; 2019 Oct; 76(20):4117-4130. PubMed ID: 31028425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are There Rab GTPases in Archaea?
    Surkont J; Pereira-Leal JB
    Mol Biol Evol; 2016 Jul; 33(7):1833-42. PubMed ID: 27034425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation and innovation in Tetrahymena membrane traffic: proteins, lipids, and compartments.
    Nusblat AD; Bright LJ; Turkewitz AP
    Methods Cell Biol; 2012; 109():141-75. PubMed ID: 22444145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrahymena thermophila: a divergent perspective on membrane traffic.
    Briguglio JS; Turkewitz AP
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):500-16. PubMed ID: 24634411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rab-based view of membrane traffic in the ciliate Tetrahymena thermophila.
    Turkewitz AP; Bright LJ
    Small GTPases; 2011 Jul; 2(4):222-226. PubMed ID: 22145095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases.
    Elias M; Brighouse A; Gabernet-Castello C; Field MC; Dacks JB
    J Cell Sci; 2012 May; 125(Pt 10):2500-8. PubMed ID: 22366452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thousands of rab GTPases for the cell biologist.
    Diekmann Y; Seixas E; Gouw M; Tavares-Cadete F; Seabra MC; Pereira-Leal JB
    PLoS Comput Biol; 2011 Oct; 7(10):e1002217. PubMed ID: 22022256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary perspective on eukaryotic membrane trafficking.
    Gurkan C; Koulov AV; Balch WE
    Adv Exp Med Biol; 2007; 607():73-83. PubMed ID: 17977460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic discovery of Rab GTPases with synaptic functions in Drosophila.
    Chan CC; Scoggin S; Wang D; Cherry S; Dembo T; Greenberg B; Jin EJ; Kuey C; Lopez A; Mehta SQ; Perkins TJ; Brankatschk M; Rothenfluh A; Buszczak M; Hiesinger PR
    Curr Biol; 2011 Oct; 21(20):1704-15. PubMed ID: 22000105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis.
    Lal K; Field MC; Carlton JM; Warwicker J; Hirt RP
    Mol Biochem Parasitol; 2005 Oct; 143(2):226-35. PubMed ID: 16099517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nested genes CDA12 and CDA13 encode proteins associated with membrane trafficking in the ciliate Tetrahymena thermophila.
    Zweifel E; Smith J; Romero D; Giddings TH; Winey M; Honts J; Dahlseid J; Schneider B; Cole ES
    Eukaryot Cell; 2009 Jun; 8(6):899-912. PubMed ID: 19286988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of the phosphoinositide kinome from two ciliates reveals novel evolutionary links for phosphoinositide kinases in eukaryotic cells.
    Leondaritis G; Siokos J; Skaripa I; Galanopoulou D
    PLoS One; 2013; 8(11):e78848. PubMed ID: 24244373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the endomembrane systems of trypanosomatids - conservation and specialisation.
    Venkatesh D; Boehm C; Barlow LD; Nankissoor NN; O'Reilly A; Kelly S; Dacks JB; Field MC
    J Cell Sci; 2017 Apr; 130(8):1421-1434. PubMed ID: 28386020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bioinformatic analysis of the RAB genes of Trypanosoma brucei.
    Ackers JP; Dhir V; Field MC
    Mol Biochem Parasitol; 2005 May; 141(1):89-97. PubMed ID: 15811530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview.
    Li G; Segev N
    Methods Mol Biol; 2021; 2293():1-18. PubMed ID: 34453706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.