These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 20976339)
41. In-situ NMR studies of isobutane activation and exchange in zeolite beta. Truitt MJ; White JL Solid State Nucl Magn Reson; 2009 Apr; 35(2):100-3. PubMed ID: 19185469 [TBL] [Abstract][Full Text] [Related]
42. Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy. Fernandez AB; Lezcano-Gonzalez I; Boronat M; Blasco T; Corma A Phys Chem Chem Phys; 2009 Jul; 11(25):5134-41. PubMed ID: 19562146 [TBL] [Abstract][Full Text] [Related]
43. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions. Motokura K; Tada M; Iwasawa Y Chem Asian J; 2008 Sep; 3(8-9):1230-6. PubMed ID: 18663720 [TBL] [Abstract][Full Text] [Related]
44. Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Wu JF; Wang WD; Xu J; Deng F; Wang W Chemistry; 2010 Dec; 16(47):14016-25. PubMed ID: 21038333 [TBL] [Abstract][Full Text] [Related]
45. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Qi G; Wang Q; Xu J; Deng F Chem Soc Rev; 2021 Aug; 50(15):8382-8399. PubMed ID: 34115080 [TBL] [Abstract][Full Text] [Related]
46. Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways. Blume R; Hävecker M; Zafeiratos S; Teschner D; Vass E; Schnörch P; Knop-Gericke A; Schlögl R; Lizzit S; Dudin P; Barinov A; Kiskinova M Phys Chem Chem Phys; 2007 Jul; 9(27):3648-57. PubMed ID: 17612729 [TBL] [Abstract][Full Text] [Related]
47. Low-temperature alkane C-H bond activation by zeolites: an in situ solid-state NMR H/D exchange study for a carbenium concerto. Haouas M; Fink G; Taulelle F; Sommer J Chemistry; 2010 Aug; 16(30):9034-9. PubMed ID: 20632419 [TBL] [Abstract][Full Text] [Related]
48. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Kim H; Kosuda KM; Van Duyne RP; Stair PC Chem Soc Rev; 2010 Dec; 39(12):4820-44. PubMed ID: 20957272 [TBL] [Abstract][Full Text] [Related]
49. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Topsøe NY Science; 1994 Aug; 265(5176):1217-9. PubMed ID: 17787589 [TBL] [Abstract][Full Text] [Related]
50. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers. Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602 [TBL] [Abstract][Full Text] [Related]
51. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions. Motokura K; Tanaka S; Tada M; Iwasawa Y Chemistry; 2009 Oct; 15(41):10871-9. PubMed ID: 19746475 [TBL] [Abstract][Full Text] [Related]
52. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst. Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520 [TBL] [Abstract][Full Text] [Related]
53. Acid-base bifunctional and dielectric outer-sphere effects in heterogeneous catalysis: a comparative investigation of model primary amine catalysts. Bass JD; Solovyov A; Pascall AJ; Katz A J Am Chem Soc; 2006 Mar; 128(11):3737-47. PubMed ID: 16536548 [TBL] [Abstract][Full Text] [Related]
54. The catalytic mechanism of EPSP synthase revisited. Lewis J; Johnson KA; Anderson KS Biochemistry; 1999 Jun; 38(22):7372-9. PubMed ID: 10353849 [TBL] [Abstract][Full Text] [Related]
55. Nanoporous oxidic solids: the confluence of heterogeneous and homogeneous catalysis. Thomas JM; Hernandez-Garrido JC; Raja R; Bell RG Phys Chem Chem Phys; 2009 Apr; 11(16):2799-825. PubMed ID: 19421495 [TBL] [Abstract][Full Text] [Related]
57. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Korzhnev DM; Kay LE Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162 [TBL] [Abstract][Full Text] [Related]
58. Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages. Xu S; Zhang W; Liu X; Han X; Bao X J Am Chem Soc; 2009 Sep; 131(38):13722-7. PubMed ID: 19736983 [TBL] [Abstract][Full Text] [Related]
59. Alkane activation over acidic zeolites: the first step. Louis B; Pereira MM; Santos FM; Esteves PM; Sommer J Chemistry; 2010 Jan; 16(2):573-6. PubMed ID: 19918812 [TBL] [Abstract][Full Text] [Related]
60. Recent advances in solid-state NMR of zeolite catalysts. Wang W; Xu J; Deng F Natl Sci Rev; 2022 Sep; 9(9):nwac155. PubMed ID: 36131885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]