These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20976530)

  • 1. Tissue response and biodegradation of composite scaffolds prepared from Thai silk fibroin, gelatin and hydroxyapatite.
    Tungtasana H; Shuangshoti S; Shuangshoti S; Kanokpanont S; Kaplan DL; Bunaprasert T; Damrongsakkul S
    J Mater Sci Mater Med; 2010 Dec; 21(12):3151-62. PubMed ID: 20976530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold.
    Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S
    Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J
    Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.
    Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F
    J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds.
    Gholipourmalekabadi M; Mozafari M; Gholipourmalekabadi M; Nazm Bojnordi M; Hashemi-Soteh MB; Salimi M; Rezaei N; Sameni M; Samadikuchaksaraei A; Ghasemi Hamidabadi H
    Biotechnol Appl Biochem; 2015; 62(4):441-50. PubMed ID: 25196187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes.
    Vachiraroj N; Ratanavaraporn J; Damrongsakkul S; Pichyangkura R; Banaprasert T; Kanokpanont S
    Int J Biol Macromol; 2009 Dec; 45(5):470-7. PubMed ID: 19660495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicked scaffolds based on coated silk woven fabric with gelatin and chitosan for soft tissue defect in oral maxillofacial area.
    Sangkert S; Kamolmatyakul S; Meesane J
    Int J Artif Organs; 2020 Mar; 43(3):189-202. PubMed ID: 31607214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering.
    Luetchford KA; Chaudhuri JB; De Bank PA
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110116. PubMed ID: 31753329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application.
    Somvipart S; Kanokpanont S; Rangkupan R; Ratanavaraporn J; Damrongsakkul S
    Int J Biol Macromol; 2013 Apr; 55():176-84. PubMed ID: 23334057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin for vascular regeneration.
    Wang D; Liu H; Fan Y
    Microsc Res Tech; 2017 Mar; 80(3):280-290. PubMed ID: 26097014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.