These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 20977414)
1. Artificial neural network (ANN) based modelling for D1 like and D2 like dopamine receptor affinity and selectivity. Karolidis DA; Agatonovic-Kustrin S; Morton DW Med Chem; 2010 Sep; 6(5):259-70. PubMed ID: 20977414 [TBL] [Abstract][Full Text] [Related]
2. CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors. Wilcox RE; Tseng T; Brusniak MY; Ginsburg B; Pearlman RS; Teeter M; DuRand C; Starr S; Neve KA J Med Chem; 1998 Oct; 41(22):4385-99. PubMed ID: 9784114 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the binding of SCH 39166 to the five cloned dopamine receptor subtypes. Tice MA; Hashemi T; Taylor LA; Duffy RA; McQuade RD Pharmacol Biochem Behav; 1994 Nov; 49(3):567-71. PubMed ID: 7862709 [TBL] [Abstract][Full Text] [Related]
4. Design, synthesis and evaluation of benzo[a]thieno[3,2-g]quinolizines as novel l-SPD derivatives possessing dopamine D1, D2 and serotonin 5-HT1A multiple action profiles. Li Z; Huang J; Sun H; Zhou S; Guo L; Zhou Y; Zhen X; Liu H Bioorg Med Chem; 2014 Nov; 22(21):5838-46. PubMed ID: 25308766 [TBL] [Abstract][Full Text] [Related]
5. In vitro pharmacological profile of YM-43611, a novel D2-like receptor antagonist with high affinity and selectivity for dopamine D3 and D4 receptors. Hidaka K; Tada S; Matsumoto M; Ohmori J; Tasaki Y; Nomura T; Usuda S; Yamaguchi T Br J Pharmacol; 1996 Apr; 117(8):1625-32. PubMed ID: 8732269 [TBL] [Abstract][Full Text] [Related]
6. Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands. Ge H; Zhang Y; Yang Z; Qiang K; Chen C; Sun L; Chen M; Zhang J Bioorg Med Chem; 2019 May; 27(10):2100-2111. PubMed ID: 30981605 [TBL] [Abstract][Full Text] [Related]
7. Localization of dopaminergic markers in the human subthalamic nucleus. Augood SJ; Hollingsworth ZR; Standaert DG; Emson PC; Penney JB J Comp Neurol; 2000 May; 421(2):247-55. PubMed ID: 10813785 [TBL] [Abstract][Full Text] [Related]
9. Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Perachon S; Schwartz JC; Sokoloff P Eur J Pharmacol; 1999 Feb; 366(2-3):293-300. PubMed ID: 10082211 [TBL] [Abstract][Full Text] [Related]
10. Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. Torvinen M; Kozell LB; Neve KA; Agnati LF; Fuxe K J Mol Neurosci; 2004; 24(2):173-80. PubMed ID: 15456930 [TBL] [Abstract][Full Text] [Related]
11. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. Schetz JA; Sibley DR J Neurochem; 1997 May; 68(5):1990-7. PubMed ID: 9109525 [TBL] [Abstract][Full Text] [Related]
12. Dopamine displays an identical apparent affinity towards functional dopamine D1 and D2 receptors in rat striatal slices: possible implications for the regulatory role of D2 receptors. Schoffelmeer AN; Hogenboom F; Mulder AH; Ronken E; Stoof JC; Drukarch B Synapse; 1994 Jul; 17(3):190-5. PubMed ID: 7974202 [TBL] [Abstract][Full Text] [Related]
13. Dopamine D1 and D2 receptor selectivities of phenyl-benzazepines in rhesus monkey striata. Weed MR; Woolverton WL; Paul IA Eur J Pharmacol; 1998 Nov; 361(1):129-42. PubMed ID: 9851550 [TBL] [Abstract][Full Text] [Related]
14. Dopamine agonists used in the treatment of Parkinson's disease and their selectivity for the D1, D2, and D3 dopamine receptors in human striatum. De Keyser J; De Backer JP; Wilczak N; Herroelen L Prog Neuropsychopharmacol Biol Psychiatry; 1995 Nov; 19(7):1147-54. PubMed ID: 8787038 [TBL] [Abstract][Full Text] [Related]
15. Dopamine receptor oligomerization visualized in living cells. O'Dowd BF; Ji X; Alijaniaram M; Rajaram RD; Kong MM; Rashid A; Nguyen T; George SR J Biol Chem; 2005 Nov; 280(44):37225-35. PubMed ID: 16115864 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and structure-activity relationships of naphthamides as dopamine D3 receptor ligands. Huang Y; Luedtke RR; Freeman RA; Wu L; Mach RH J Med Chem; 2001 May; 44(11):1815-26. PubMed ID: 11356115 [TBL] [Abstract][Full Text] [Related]
17. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex. Özkan M; Johnson NW; Sehirli US; Woodhall GL; Stanford IM PLoS One; 2017; 12(7):e0181633. PubMed ID: 28732063 [TBL] [Abstract][Full Text] [Related]
18. Gradients of dopamine D1- and D2/3-binding sites in the basal ganglia of pig and monkey measured by PET. Rosa-Neto P; Doudet DJ; Cumming P Neuroimage; 2004 Jul; 22(3):1076-83. PubMed ID: 15219579 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Zhuang Y; Xu P; Mao C; Wang L; Krumm B; Zhou XE; Huang S; Liu H; Cheng X; Huang XP; Shen DD; Xu T; Liu YF; Wang Y; Guo J; Jiang Y; Jiang H; Melcher K; Roth BL; Zhang Y; Zhang C; Xu HE Cell; 2021 Feb; 184(4):931-942.e18. PubMed ID: 33571431 [TBL] [Abstract][Full Text] [Related]
20. 9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: a potent full dopamine D1 agonist containing a rigid-beta-phenyldopamine pharmacophore. Ghosh D; Snyder SE; Watts VJ; Mailman RB; Nichols DE J Med Chem; 1996 Jan; 39(2):549-55. PubMed ID: 8558526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]