BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20977780)

  • 1. Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins.
    Ahmad S; Singh YH; Paudel Y; Mori T; Sugita Y; Mizuguchi K
    BMC Bioinformatics; 2010 Oct; 11():533. PubMed ID: 20977780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks.
    Andrabi M; Mizuguchi K; Sarai A; Ahmad S
    BMC Struct Biol; 2009 May; 9():30. PubMed ID: 19439068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of structural features and application to outer membrane protein identification.
    Yan R; Wang X; Huang L; Yan F; Xue X; Cai W
    Sci Rep; 2015 Jun; 5():11586. PubMed ID: 26104144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors.
    Langelaan DN; Wieczorek M; Blouin C; Rainey JK
    J Chem Inf Model; 2010 Dec; 50(12):2213-20. PubMed ID: 21090591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FLEXc: protein flexibility prediction using context-based statistics, predicted structural features, and sequence information.
    Yaseen A; Nijim M; Williams B; Qian L; Li M; Wang J; Li Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):281. PubMed ID: 27587065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features.
    Sawhney A; Li J; Liao L
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.
    Gunasekaran K; Nussinov R
    J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical analyses and computational prediction of helical kinks in membrane proteins.
    Huang YH; Chen CM
    J Comput Aided Mol Des; 2012 Oct; 26(10):1171-85. PubMed ID: 22996198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning.
    Klausen MS; Jespersen MC; Nielsen H; Jensen KK; Jurtz VI; Sønderby CK; Sommer MOA; Winther O; Nielsen M; Petersen B; Marcatili P
    Proteins; 2019 Jun; 87(6):520-527. PubMed ID: 30785653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting helix-helix interactions from residue contacts in membrane proteins.
    Lo A; Chiu YY; Rødland EA; Lyu PC; Sung TY; Hsu WL
    Bioinformatics; 2009 Apr; 25(8):996-1003. PubMed ID: 19244388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of helix interactions and residue contacts in membrane proteins.
    Hönigschmid P; Frishman D
    J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions.
    Rath EM; Tessier D; Campbell AA; Lee HC; Werner T; Salam NK; Lee LK; Church WB
    BMC Bioinformatics; 2013 Mar; 14():111. PubMed ID: 23530628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AllesTM: predicting multiple structural features of transmembrane proteins.
    Hönigschmid P; Breimann S; Weigl M; Frishman D
    BMC Bioinformatics; 2020 Jun; 21(1):242. PubMed ID: 32532211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.