These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20977884)
1. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica. Poopanitpan N; Kobayashi S; Fukuda R; Horiuchi H; Ohta A Biochem Biophys Res Commun; 2010 Nov; 402(4):731-5. PubMed ID: 20977884 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica. Mori K; Iwama R; Kobayashi S; Horiuchi H; Fukuda R; Ohta A FEMS Yeast Res; 2013 Mar; 13(2):233-40. PubMed ID: 23241327 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Fukuda R Biosci Biotechnol Biochem; 2013; 77(6):1149-54. PubMed ID: 23748781 [TBL] [Abstract][Full Text] [Related]
4. Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Hynes MJ; Murray SL; Duncan A; Khew GS; Davis MA Eukaryot Cell; 2006 May; 5(5):794-805. PubMed ID: 16682457 [TBL] [Abstract][Full Text] [Related]
5. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. Fickers P; Benetti PH; Waché Y; Marty A; Mauersberger S; Smit MS; Nicaud JM FEMS Yeast Res; 2005 Apr; 5(6-7):527-43. PubMed ID: 15780653 [TBL] [Abstract][Full Text] [Related]
6. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. Tenagy ; Park JS; Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R FEMS Yeast Res; 2015 Jun; 15(4):fov031. PubMed ID: 26019148 [TBL] [Abstract][Full Text] [Related]
7. Acyl-CoA synthetases, Aal4 and Aal7, are involved in the utilization of exogenous fatty acids in Yarrowia lipolytica. Tenagy ; Iwama R; Kobayashi S; Shiwa Y; Yoshikawa H; Horiuchi H; Fukuda R; Kajiwara S J Gen Appl Microbiol; 2021 Apr; 67(1):9-14. PubMed ID: 33100277 [TBL] [Abstract][Full Text] [Related]
9. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. Gatter M; Förster A; Bär K; Winter M; Otto C; Petzsch P; Ježková M; Bahr K; Pfeiffer M; Matthäus F; Barth G FEMS Yeast Res; 2014 Sep; 14(6):858-72. PubMed ID: 24931727 [TBL] [Abstract][Full Text] [Related]
10. Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Takai H; Iwama R; Kobayashi S; Horiuchi H; Fukuda R; Ohta A Fungal Genet Biol; 2012 Jan; 49(1):58-64. PubMed ID: 22119766 [TBL] [Abstract][Full Text] [Related]
11. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. Dulermo R; Gamboa-Meléndez H; Dulermo T; Thevenieau F; Nicaud JM FEMS Yeast Res; 2014 Sep; 14(6):883-96. PubMed ID: 24945074 [TBL] [Abstract][Full Text] [Related]
12. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R FEMS Yeast Res; 2015 May; 15(3):. PubMed ID: 25805841 [TBL] [Abstract][Full Text] [Related]
13. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539 [TBL] [Abstract][Full Text] [Related]
14. YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Sumita T; Iida T; Yamagami S; Horiuchi H; Takagi M; Ohta A Biochem Biophys Res Commun; 2002 Jun; 294(5):1071-8. PubMed ID: 12074586 [TBL] [Abstract][Full Text] [Related]
15. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. Dulermo R; Gamboa-Meléndez H; Ledesma-Amaro R; Thévenieau F; Nicaud JM Biochim Biophys Acta; 2015 Sep; 1851(9):1202-17. PubMed ID: 25887939 [TBL] [Abstract][Full Text] [Related]
16. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Dulermo T; Lazar Z; Dulermo R; Rakicka M; Haddouche R; Nicaud JM Biochim Biophys Acta; 2015 Sep; 1851(9):1107-17. PubMed ID: 25959598 [TBL] [Abstract][Full Text] [Related]
17. Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Song Y; Choi MH; Park JN; Kim MW; Kim EJ; Kang HA; Kim JY Appl Environ Microbiol; 2007 Jul; 73(14):4446-54. PubMed ID: 17513593 [TBL] [Abstract][Full Text] [Related]
18. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica. Gatter M; Ottlik S; Kövesi Z; Bauer B; Matthäus F; Barth G Fungal Genet Biol; 2016 Oct; 95():30-38. PubMed ID: 27486067 [TBL] [Abstract][Full Text] [Related]
19. Peroxisomal peripheral membrane protein YlInp1p is required for peroxisome inheritance and influences the dimorphic transition in the yeast Yarrowia lipolytica. Chang J; Fagarasanu A; Rachubinski RA Eukaryot Cell; 2007 Sep; 6(9):1528-37. PubMed ID: 17644654 [TBL] [Abstract][Full Text] [Related]
20. Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. Rottensteiner H; Kal AJ; Filipits M; Binder M; Hamilton B; Tabak HF; Ruis H EMBO J; 1996 Jun; 15(12):2924-34. PubMed ID: 8670793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]