These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 20978170)
1. Characterization of the covalent binding of N-phenyl-N'-(2-chloroethyl)ureas to {beta}-tubulin: importance of Glu198 in microtubule stability. Fortin S; Bouchon B; Chambon C; Lacroix J; Moreau E; Chezal JM; Degoul F; C-Gaudreault R J Pharmacol Exp Ther; 2011 Feb; 336(2):460-7. PubMed ID: 20978170 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of action of N-phenyl-N'-(2-chloroethyl)ureas in the colchicine-binding site at the interface between alpha- and beta-tubulin. Fortin S; Wei L; Moreau E; Labrie P; Petitclerc E; Kotra LP; C-Gaudreault R Bioorg Med Chem; 2009 May; 17(10):3690-7. PubMed ID: 19398206 [TBL] [Abstract][Full Text] [Related]
3. Microtubule disruption induced in vivo by alkylation of beta-tubulin by 1-aryl-3-(2-chloroethyl)ureas, a novel class of soft alkylating agents. Legault J; Gaulin JF; Mounetou E; Bolduc S; Lacroix J; Poyet P; Gaudreault RC Cancer Res; 2000 Feb; 60(4):985-92. PubMed ID: 10706114 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular cyclization of N-phenyl N'(2-chloroethyl)ureas leads to active N-phenyl-4,5-dihydrooxazol-2-amines alkylating β-tubulin Glu198 and prohibitin Asp40. Trzeciakiewicz A; Fortin S; Moreau E; C-Gaudreault R; Lacroix J; Chambon C; Communal Y; Chezal JM; Miot-Noirault E; Bouchon B; Degoul F Biochem Pharmacol; 2011 May; 81(9):1116-23. PubMed ID: 21371445 [TBL] [Abstract][Full Text] [Related]
5. Alkylation potency and protein specificity of aromatic urea derivatives and bioisosteres as potential irreversible antagonists of the colchicine-binding site. Fortin JS; Lacroix J; Desjardins M; Patenaude A; Petitclerc E; C-Gaudreault R Bioorg Med Chem; 2007 Jul; 15(13):4456-69. PubMed ID: 17498960 [TBL] [Abstract][Full Text] [Related]
6. Alkylation of beta-tubulin on Glu 198 by a microtubule disrupter. Bouchon B; Chambon C; Mounetou E; Papon J; Miot-Noirault E; Gaudreault RC; Madelmont JC; Degoul F Mol Pharmacol; 2005 Nov; 68(5):1415-22. PubMed ID: 16099845 [TBL] [Abstract][Full Text] [Related]
7. N-Phenyl-N'-(2-chloroethyl)ureas (CEU) as potential antineoplastic agents. Part 2: role of omega-hydroxyl group in the covalent binding to beta-tubulin. Fortin S; Moreau E; Patenaude A; Desjardins M; Lacroix J; Rousseau JL; C-Gaudreault R Bioorg Med Chem; 2007 Feb; 15(3):1430-8. PubMed ID: 17118664 [TBL] [Abstract][Full Text] [Related]
8. Antiangiogenic and antitumoral activity of phenyl-3-(2-chloroethyl)ureas: a class of soft alkylating agents disrupting microtubules that are unaffected by cell adhesion-mediated drug resistance. Petitclerc E; Deschesnes RG; Côté MF; Marquis C; Janvier R; Lacroix J; Miot-Noirault E; Legault J; Mounetou E; Madelmont JC; C -Gaudreault R Cancer Res; 2004 Jul; 64(13):4654-63. PubMed ID: 15231678 [TBL] [Abstract][Full Text] [Related]
9. N-Phenyl-N'-(2-chloroethyl)ureas (CEUs) as potential antineoplastic agents. Part 3: role of carbonyl groups in the covalent binding to the colchicine-binding site. Moreau E; Fortin S; Lacroix J; Patenaude A; Rousseau JL; C-Gaudreault R Bioorg Med Chem; 2008 Feb; 16(3):1206-17. PubMed ID: 17998163 [TBL] [Abstract][Full Text] [Related]
10. A comparative molecular field and comparative molecular similarity indices analyses (CoMFA and CoMSIA) of N-phenyl-N'-(2-chloroethyl)ureas targeting the colchicine-binding site as anticancer agents. Fortin S; Labrie P; Moreau E; Wei L; Kotra LP; C-Gaudreault R Bioorg Med Chem; 2008 Feb; 16(4):1914-26. PubMed ID: 18023585 [TBL] [Abstract][Full Text] [Related]
11. Alkylation of prohibitin by cyclohexylphenyl-chloroethyl urea on an aspartyl residue is associated with cell cycle G(1) arrest in B16 cells. Bouchon B; Papon J; Communal Y; Madelmont JC; Degoul F Br J Pharmacol; 2007 Oct; 152(4):449-55. PubMed ID: 17704829 [TBL] [Abstract][Full Text] [Related]
12. N-(4-iodophenyl)-N'-(2-chloroethyl)urea as a microtubule disrupter: in vitro and in vivo profiling of antitumoral activity on CT-26 murine colon carcinoma cell line cultured and grafted to mice. Borel M; Degoul F; Communal Y; Mounetou E; Bouchon B; C-Gaudreault R; Madelmont JC; Miot-Noirault E Br J Cancer; 2007 Jun; 96(11):1684-91. PubMed ID: 17486131 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, antiproliferative activity evaluation and structure-activity relationships of novel aromatic urea and amide analogues of N-phenyl-N'-(2-chloroethyl)ureas. Fortin S; Moreau E; Lacroix J; Côté MF; Petitclerc E; C-Gaudreault R Eur J Med Chem; 2010 Jul; 45(7):2928-37. PubMed ID: 20400211 [TBL] [Abstract][Full Text] [Related]
14. Electrostatic contributions to colchicine binding within tubulin isotypes. Huzil JT; Barakat K; Tuszynski JA Electromagn Biol Med; 2009; 28(4):355-64. PubMed ID: 20017626 [TBL] [Abstract][Full Text] [Related]
15. Selective alkylation of beta(II)-tubulin and thioredoxin-1 by structurally related subsets of aryl chloroethylureas leading to either anti-microtubules or redox modulating agents. Fortin JS; Côté MF; Lacroix J; Desjardins M; Petitclerc E; C-Gaudreault R Bioorg Med Chem; 2008 Aug; 16(15):7277-90. PubMed ID: 18617414 [TBL] [Abstract][Full Text] [Related]
16. N-Phenyl-N'-(2-chloroethyl)urea analogues of combretastatin A-4: Is the N-phenyl-N'-(2-chloroethyl)urea pharmacophore mimicking the trimethoxy phenyl moiety? Fortin S; Moreau E; Lacroix J; Teulade JC; Patenaude A; C-Gaudreault R Bioorg Med Chem Lett; 2007 Apr; 17(7):2000-4. PubMed ID: 17291753 [TBL] [Abstract][Full Text] [Related]
17. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analogue, HTI-286, have mutations in alpha- or beta-tubulin and increased microtubule stability. Poruchynsky MS; Kim JH; Nogales E; Annable T; Loganzo F; Greenberger LM; Sackett DL; Fojo T Biochemistry; 2004 Nov; 43(44):13944-54. PubMed ID: 15518543 [TBL] [Abstract][Full Text] [Related]
18. A new generation of N-aryl-N'-(1-alkyl-2-chloroethyl)ureas as microtubule disrupters: synthesis, antiproliferative activity, and beta-tubulin alkylation kinetics. Mounetou E; Legault J; Lacroix J; C -Gaudreault R J Med Chem; 2003 Nov; 46(23):5055-63. PubMed ID: 14584955 [TBL] [Abstract][Full Text] [Related]
19. Styryl-N-phenyl-N'-(2-chloroethyl)ureas and styrylphenylimidazolidin-2-ones as new potent microtubule-disrupting agents using combretastatin A-4 as model. Gagné-Boulet M; Fortin S; Lacroix J; Lefebvre CA; Côté MF; C-Gaudreault R Eur J Med Chem; 2015 Jul; 100():34-43. PubMed ID: 26069928 [TBL] [Abstract][Full Text] [Related]
20. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Suzuki K; Koike T Neuroscience; 2007 Jul; 147(3):599-612. PubMed ID: 17574768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]