These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Aromatic Polyimide Membranes with Esteban N; Juan-Y-Seva M; Aguilar-Lugo C; Miguel JA; Staudt C; de la Campa JG; Álvarez C; Lozano ÁE Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559884 [TBL] [Abstract][Full Text] [Related]
4. Isomer-Tailored Carbon Molecular Sieve Membranes with High Gas Separation Performance. Qiu W; Li FS; Fu S; Koros WJ ChemSusChem; 2020 Oct; 13(19):5318-5328. PubMed ID: 32729990 [TBL] [Abstract][Full Text] [Related]
5. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Hunger K; Schmeling N; Jeazet HB; Janiak C; Staudt C; Kleinermanns K Membranes (Basel); 2012 Oct; 2(4):727-63. PubMed ID: 24958427 [TBL] [Abstract][Full Text] [Related]
6. Membrane-based gas separation of ethylene/ethylene oxide mixtures for product enrichment in microreactor technology. Schiewe B; Staudt-Bickel C; Vuin A; Wegner G Chemphyschem; 2001 Apr; 2(4):211-8. PubMed ID: 23696482 [TBL] [Abstract][Full Text] [Related]
7. Polyimide-Based Membrane Materials for CO Jankowski A; Grabiec E; Nocoń-Szmajda K; Marcinkowski A; Janeczek H; Wolińska-Grabczyk A Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33918006 [TBL] [Abstract][Full Text] [Related]
8. Experimental Mixed-Gas Permeability, Sorption and Diffusion of CO₂-CH₄ Mixtures in 6FDA-mPDA Polyimide Membrane: Unveiling the Effect of Competitive Sorption on Permeability Selectivity. Genduso G; Ghanem BS; Pinnau I Membranes (Basel); 2019 Jan; 9(1):. PubMed ID: 30626040 [TBL] [Abstract][Full Text] [Related]
9. Confined Ionic Liquid-Built Gas Transfer Pathways for Efficient Propylene/Propane Separation. Sun Y; Zhang Z; Tian L; Huang H; Geng C; Guo X; Qiao Z; Zhong C ACS Appl Mater Interfaces; 2021 Oct; 13(41):49050-49057. PubMed ID: 34612045 [TBL] [Abstract][Full Text] [Related]
10. Tuning the Gas Selectivity of Tröger's Base Polyimide Membranes by Using Carboxylic Acid and Tertiary Base Interactions. Wang Z; Isfahani AP; Wakimoto K; Shrestha BB; Yamaguchi D; Ghalei B; Sivaniah E ChemSusChem; 2018 Aug; 11(16):2744-2751. PubMed ID: 29808569 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation. Alaslai N; Ma X; Ghanem B; Wang Y; Alghunaimi F; Pinnau I Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28691317 [TBL] [Abstract][Full Text] [Related]
13. Effect of a Different Number of Amine-Functional Groups on the Gas Sorption and Permeation Behavior of a Hybrid Membrane Comprising of Impregnated Linde T and 4,4'- (Hexafluoroisopropylidene) Diphthalic Anhydride-Derived Polyimide. Jusoh N; Yeong YF; Lock SSM; Yub Harun N; Mohd Yusoff MH Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31689895 [TBL] [Abstract][Full Text] [Related]
14. Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation. Pithan F; Staudt-Bickel C Chemphyschem; 2003 Sep; 4(9):967-73. PubMed ID: 14562442 [TBL] [Abstract][Full Text] [Related]
15. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO₂/CH₄ Separation. Ahmad MZ; Pelletier H; Martin-Gil V; Castro-Muñoz R; Fila V Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30127269 [TBL] [Abstract][Full Text] [Related]
16. The spirobichroman-based polyimides with different side groups: from structure-property relationships to chain packing and gas transport performance. Wang S; Tong X; Wang C; Han X; Jin S; Wang D; Yao J; Chen C RSC Adv; 2021 Jan; 11(9):5086-5095. PubMed ID: 35424437 [TBL] [Abstract][Full Text] [Related]
17. Performance of butyrylcellulose membranes for benzene/cyclohexane mixtures containing a low benzene concentration by pervaporation. Uragami T; Tsukamoto K; Miyata T Biomacromolecules; 2004; 5(6):2116-21. PubMed ID: 15530024 [TBL] [Abstract][Full Text] [Related]
18. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Du N; Cin MM; Pinnau I; Nicalek A; Robertson GP; Guiver MD Macromol Rapid Commun; 2011 Apr; 32(8):631-6. PubMed ID: 21480419 [TBL] [Abstract][Full Text] [Related]
19. A comparison of homopolymer and block copolymer structure in 6FDA-based polyimides. Tanis I; Brown D; Neyertz SJ; Heck R; Mercier R Phys Chem Chem Phys; 2014 Nov; 16(42):23044-55. PubMed ID: 25247609 [TBL] [Abstract][Full Text] [Related]
20. Molecularly Engineered 6FDA-Based Polyimide Membranes for Sour Natural Gas Separation. Liu Z; Liu Y; Qiu W; Koros WJ Angew Chem Int Ed Engl; 2020 Aug; 59(35):14877-14883. PubMed ID: 32365260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]